IRBIT PROMOTES ALLOSTERIC INHIBITION OF RIBONUCLEOTIDE REDUCTASE

Some chemotherapeutic agents in clinical use are inhibitors of ribonucleotide reductase (RNR), which supplies the building blocks necessary for DNA synthesis and repair by converting ribonucleotide diphosphates to deoxynucleotide diphosphates, immediate precursors of deoxynucleotide triphosphates (dNTP). However, given that most of these compounds are nucleoside analogs that bind other nucleotide-binding proteins in addition to RNR, off-target interactions may contribute to the toxicity of these compounds. Arnaoutov and Dasso found that inositol-1,4,5-trisphosphate receptor-binding protein (IRBIT; also known as adenosylhomocysteinase-like 1, or AHCYL1) directly interacts with the R1 subunit of RNR in a deoxyadenosine triphosphate (dATP)-dependent manner. dATP is an allosteric regulator of RNR that either inhibits RNR by binding R1 at its low-affinity activity site (A-site) or promotes RNR catalytic activity by binding R1 at its specificity site (S-site). The authors showed that IRBIT binding to RNR inhibited the dissociation of dATP from the A-site of R1, thus stabilizing RNR in its inactive state and significantly inhibiting RNR activity in vitro. This inhibitory potential of IRBIT was modulated by phosphorylation, as a nonphosphorylatable IRBIT mutant had a reduced capacity to stabilize the dATP–R1 interaction. Depletion of IRBIT in asynchronously growing HeLa cells led to imbalanced dNTP levels; the imbalance was particularly pronounced during mitosis, when IRBIT was found to bind R1 more strongly compared with G1. Knockdown of IRBIT also led to interphase length variability and accelerated mitotic progression, but the nonphosphorylatable IRBIT mutant was unable to rescue this phenotype, suggesting that IRBIT controls cell-cycle progression and that IRBIT phosphorylation is necessary for this role. These findings raise the possibility that regulation of RNR by IRBIT controls genomic stability and ensures proper cell-cycle progression by maintaining balanced intracellular dNTP pools and provide a framework for the development of RNR-selective inhibitors that may be less toxic than RNR inhibitors currently in use.

PRKD1 MUTATIONS CHARACTERIZE SALIVARY GLAND POLYMORPHOUS LOW-GRADE ADENOCARCINOMA

Polymorphous low-grade adenocarcinoma (PLGA) is a relatively indolent malignant salivary tumor that metastasizes to the lymph nodes in approximately 29% of patients but rarely metastasizes to distant sites. PLGAs are histologically heterogeneous and thus are difficult to distinguish from more aggressive salivary gland cancer subtypes. To identify characteristic molecular features of salivary gland PLGA that may aid in diagnosis, Weinreb, Piscuoglio, Martelotto, Wagott, and colleagues performed whole-transcriptome and whole-exome sequencing of 3 PLGAs and whole-exome sequencing of an additional 3 tumors and identified a protein kinase D1 (PRKD1) mutation resulting in an E710D amino acid substitution in 5 of 6 samples. Screening of an additional 53 salivary gland PLGAs revealed that this hotspot mutation occurred in 43 of 59 (73%) PLGAs overall. Although PRKD1 was found to be mutated in 2% of samples in published cancer genome datasets, none of the tumors had the E710D hotspot mutation, suggesting that this might be a distinguishing feature of PLGA. Indeed, in an analysis of 311 benign and malignant salivary gland tumors, this PRKD1 mutation was found only in PLGAs. The E710D mutation, which lies within the catalytic loop of the PRKD1 kinase domain, led to significantly increased kinase activity compared with wild-type PRKD1 in an in vitro kinase assay, suggesting that this mutation activates PRKD1. Interestingly, forced expression of the E710D mutant promoted proliferation and altered the glandular architecture of epithelial cells in vitro, further suggesting that this mutation confers a growth advantage to cells, but expression of the mutant protein reduced cellular migration. Consistent with these findings, the presence of the PRKD1 hotspot mutation was significantly associated with metastasis-free survival. Collectively, these findings indicate that PRKD1 mutations may have diagnostic and prognostic utility and distinguish indolent PLGA from more aggressive salivary gland tumors.

Note: Research Watch is written by Cancer Discovery Science Writers. Readers are encouraged to consult the original articles for full details. For more Research Watch, visit Cancer Discovery online at http://CDisnews.aacrjournals.org.
IRBIT Promotes Allosteric Inhibition of Ribonucleotide Reductase

Cancer Discovery 2014;4:1255. Published OnlineFirst September 25, 2014.

Updated version

Access the most recent version of this article at:

doi:10.1158/2159-8290.CD-RW2014-203

E-mail alerts

Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions

To request permission to re-use all or part of this article, use this link:

http://cancerdiscovery.aacrjournals.org/content/4/11/1255.1.

Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.