RESEARCH WATCH

Metabolism

Major finding: Low glucose-sensitive cancer cells have impaired OXPHOS up-regulation and respond to phenformin.

Concept: Complex I mtDNA mutations or defective glucose utilization confer sensitivity to glucose limitation.

Impact: Glucose utilization defects or mtDNA mutations may identify tumors more likely to respond to biguanides.

METABOLIC STATUS DETERMINES CANCER CELL SENSITIVITY TO LOW GLUCOSE

Rapidly proliferating tumors must satisfy energetic demands for cell growth and replication and adapt to diminished nutrient concentrations within the tumor microenvironment. In an effort to identify cancer cell metabolic dependencies under chronic low-glucose conditions, Birsoy and colleagues used a continuous-flow culture system that maintains cells at a steady low-glucose concentration to perform a long-term competitive proliferation assay of 28 pooled patient-derived cancer cell lines in culture. The proliferative response to glucose limitation was diverse, as most cell lines were unaffected, but others showed impaired or enhanced growth. An RNA screen of human metabolic genes identified the nuclear-encoded components of mitochondrial oxidative phosphorylation (OXPHOS) as necessary for optimal proliferation of cancer cells under low-glucose conditions. Consistent with this finding, low glucose-sensitive cell lines had a significantly reduced ability to increase their oxygen consumption rates under glucose limitation that correlated with either reduced expression of GLUT3 and GLUT1 glucose transporters or heteroplasmic mutations in the mitochondrial genome-encoded (mtDNA) respiratory chain complex I subunits, suggesting that impaired glucose utilization and mitochondrial dysfunction are two distinct mechanisms that confer low-glucose sensitivity. Interestingly, cancer cell lines with these metabolic features were 5- to 20-fold more sensitive to OXPHOS inhibition with phenformin, a potent biguanide compound used as an antidiabetic agent, under glucose limitation in vitro and in a murine tumor xenograft model. Overexpression of GLUT3 in cells with glucose utilization defects or ectopic expression of the yeast ubiquinone oxidoreductase NDI1 to allow bypass of complex I in cells with mtDNA complex I mutations rescued the defects in oxygen consumption rate and proliferation caused by glucose limitation as well as phenformin sensitivity in vitro and in mouse tumor xenografts. Together, these findings suggest that impaired glucose utilization and mtDNA complex I mutations may be used to predict sensitivity of tumors to OXPHOS inhibition with biguanides.

Immunotherapy

Major finding: Localized Newcastle disease virus (NDV) therapy induces a systemic antitumor inflammatory response.

Clinical relevance: Local NDV therapy and systemic CTLA-4 blockade led to distant tumor rejection and antitumor immunity.

Impact: Oncolytic virotherapy may improve the clinical efficacy of immune checkpoint inhibitors.

LOCALIZED ONCOLYTIC VIROTHERAPY HAS DISTANT ANTITUMOR EFFECTS

Localized administration of oncolytic viruses that preferentially infect and kill cancer cells has shown antitumor activity, but the effects on distant or metastatic tumors are unknown. To recapitulate the effects of localized oncolytic virotherapy on metastatic disease, Zamarin and colleagues used a bilateral flank tumor model in which only one tumor was injected with Newcastle disease virus (NDV), a nonpathogenic oncolytic virus that has been safely used in clinical trials. Although viral replication was limited to the injection site, NDV treatment stimulated a potent inflammatory response that delayed growth and induced infiltration by innate and effector T cells of both local and distant tumors. This NDV-driven response was tumor antigen specific and required CD8+ T cells, natural killer cells, and type I IFN. However, NDV therapy only induced complete contralateral tumor regression in approximately 10% of treated mice, suggesting that immunosuppressive tumor microenvironments limited the effect of the NDV-induced inflammatory response. Consistent with this possibility, the T-cell inhibitory receptor cytotoxic T-lymphocyte antigen 4 (CTLA-4) was upregulated on tumor-infiltrating T cells, prompting the authors to hypothesize that NDV therapy might sensitize tumors to CTLA-4 blockade. Indeed, combining localized NDV therapy with systemic anti-CTLA-4 antibody therapy led to greater bilateral tumor rejection, long-term survival, and protection against tumor rechallenge than either agent alone. The efficacy of this combination therapy was successfully extended to cancer cell types that are known to be strongly resistant to virus-mediated lysis, further demonstrating that NDV mediates its antitumor effects by stimulating the innate and adaptive immune system rather than by direct lysis. In addition to showing that localized oncolytic therapy activates a tumor-specific systemic antitumor inflammatory response that enhances lymphocyte infiltration of distant tumors, these findings provide a rationale for combination immunotherapy with oncolytic viruses and immune checkpoint inhibitors.

Glucose Metabolic Status Determines Cancer Cell Sensitivity to Low Glucose

Cancer Discovery 2014;4:506. Published OnlineFirst March 27, 2014.

Access the most recent version of this article at: doi:10.1158/2159-8290.CD-RW2014-067

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/4/5/506.1. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.