CONTENTS

IN THIS ISSUE
Highlighted research articles 745

NEWS IN BRIEF
Important news stories affecting the community 750

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 755

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS
In The Spotlight

SPSB1 May HaveMET Its Match during Breast Cancer Recurrence 760
Y. Qin and S.S. McAllister

See article, p. 790

BluepRINT for Moderate-to-Low Penetrance Cancer Susceptibility Genes Needed: Breast Cancer and Beyond 762
J. Ngeow and C. Eng

See article, p. 804

A Little pRB Can Lead to Big Problems 764
P.W. Hinds

See article, p. 840

MINI REVIEW
Targeting Mitochondrial Metabolism by Inhibiting Autophagy in BRAF-Driven Cancers 766
A.M. Strohecker and E. White

RESEARCH BRIEFS

Autophagy Inhibition Improves Chemosensitivity in BRAF V600E Brain Tumors 773

Précis: BRAF V600E-positive pediatric central nervous system tumor cells are autophagy-dependent and can be effectively targeted with combined chloroquine and vemurafenib therapy.

RESEARCH ARTICLES

Obligate Progression Precedes Lung Adenocarcinoma Dissemination 781

Précis: Tumor-cell dissemination is a rate-limiting step in lung cancer metastasis that requires genetic alterations that can be facilitated by p53 loss and is characterized by downregulation of Nkx2-1.

SPSB1 Promotes Breast Cancer Recurrence by Potentiating c-MET Signaling 790

Précis: Upregulation of SPSB1 enhances the survival of residual tumor cells and mediates tumor recurrence by activating c-MET signaling in aggressive breast cancer subtypes. See commentary, p. 760

Rare Mutations in RINT1 Predispose Carriers to Breast and Lynch Syndrome-Spectrum Cancers 804

Précis: Rare variants in RINT1 are associated with increased risk for breast cancer as well as a spectrum of cancers that are associated with DNA mismatch repair defects. See commentary, p. 762
Mulcahy Levy and colleagues report that autophagy is increased in \(\text{BRAF}^{\text{V600E}} \)-positive pediatric central nervous system (CNS) tumors, suggesting that \(\text{BRAF} \)-mutant CNS tumors may be dependent on autophagy. Indeed, inhibition of autophagy was cytotoxic to \(\text{BRAF}^{\text{V600E}} \)-positive CNS tumor cells, and the autophagy inhibitor chloroquine showed synergistic activity with the \(\text{BRAF} \) inhibitor vemurafenib in \(\text{BRAF} \)-mutant CNS tumor cells. The addition of chloroquine to vemurafenib overcame vemurafenib resistance in primary \(\text{BRAF} \)-mutant pleomorphic xanthoastrocytoma cells, and combined chloroquine and vemurafenib rapidly improved symptoms and led to durable disease stabilization in a patient with vemurafenib-refractory \(\text{BRAF}^{\text{V600E}} \)-positive brainstem ganglioglioma. These findings provide a rationale for combining autophagy inhibitors with \(\text{BRAF} \)-targeted therapy in patients with \(\text{BRAF} \)-mutant CNS tumors. For details, please see the article by Mulcahy Levy and colleagues on page 773.