IN THIS ISSUE
Highlighted research articles 973

NEWS IN BRIEF
Important news stories affecting the community 978

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 983

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.

VIEWS
In The Spotlight

RADical Response Puts an Exceptional Responder in CHKmate: A Synthetic Lethal Curative Response to DNA-Damaging Chemotherapy? 988
G. Peng, S.E. Woodman, and G.B. Mills
See article, p. 1014

A HER 1-2 Punch: Dual EGFR Targeting Deals Resistance a Deadly Blow 991
D.L. Gibbons and L.A. Byers
See article, p. 1036

Tracing the Roots of Cancer Evolution 995
Y. Jiang and O. Elemento
See article, p. 1088

REVIEW
Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research 998

RESEARCH BRIEF
Synthetic Lethality in ATM-Deficient RAD50-Mutant Tumors Underlies Outlier Response to Cancer Therapy 1014
Précis: Whole-genome sequencing of an outlier responder identified a tumor-specific synthetic lethal relationship between RAD50 mutation, checkpoint inhibition, and genotoxic chemotherapy. See commentary, p. 988

RESEARCH ARTICLES
Cell-Cycle Reprogramming for PI3K Inhibition Overrides a Relapse-Specific C481S BTK Mutation Revealed by Longitudinal Functional Genomics in Mantle Cell Lymphoma 1022
Précis: Longitudinal analysis of MCL tumors identified the relapse-specific BTK C481S mutation and provided evidence that targeting CDK4 overcomes ibrutinib resistance.

Dual Inhibition of EGFR with Afatinib and Cetuximab in Kinase Inhibitor–Resistant EGFR-Mutant Lung Cancer with and without T790M Mutations 1036
Précis: The combination of afatinib and cetuximab shows antitumor activity and a manageable safety profile in heavily pretreated patients with EGFR-mutant lung cancer and acquired resistance to erlotinib/gefitinib. See commentary, p. 991

Downloaded from cancerdiscovery.aacrjournals.org on March 25, 2021. © 2014 American Association for Cancer Research.
AZD9291, an Irreversible EGFR TKI, Overcomes T790M-Mediated Resistance to EGFR Inhibitors in Lung Cancer1046
Précis: A third-generation EGFR inhibitor selectively targets EGFR mutants, including T790M, but not wild-type EGFR, and induces durable antitumor responses in preclinical models and patients with NSCLC.

Defining Key Signaling Nodes and Therapeutic Biomarkers in NF1-Mutant Cancers1062
C.F. Malone, J.A. Fromm, O. Maertens, T. DeRaedt, R. Ingraham, and K. Cichowski
Précis: mTORC1 and MEK are the critical mediators of malignancy in NF1-mutant MPNST, and their combined inhibition induces tumor regression that can be measured by reduced 18F-FDG uptake.

Maturation Stage of T-cell Acute Lymphoblastic Leukemia Determines BCL-2 versus BCL-XL Dependence and Sensitivity to ABT-1991074
Précis: Unlike most T-ALLs, which are dependent on BCL-XL, early T-cell progenitor ALL shows selective dependence on BCL-2 and is sensitive to BCL-2 inhibition with the BH3 mimetic ABT-199.

Acquired Initiating Mutations in Early Hematopoietic Cells of CLL Patients1088
Précis: CLL develops from preleukemic hematopoietic progenitor cells harboring mutations that converge on deregulation of B-cell receptor signaling and early B-cell differentiation.
See commentary, p. 995

Using whole-genome sequencing, Al-Ahmadie, Iyer, Hohl, and colleagues identified a clonal hemizygous RAD50^{L1237F} mutation in an outlier patient with metastatic small-cell ureter cancer who achieved a complete and durable response to treatment with a checkpoint kinase 1 inhibitor and irinotecan. RAD50^{L1237F} was accompanied by LOH of the wild-type allele and mutated a highly conserved residue required for proper MRE11 complex function in DNA repair. RAD50 mutation impaired activation of ataxia telangiectasia mutated (ATM) signaling, leading to a synthetic lethal effect when checkpoint inhibition was combined with DNA-damaging chemotherapy. These findings highlight the utility of this approach to dissect tumor-specific dependencies and provide a rationale for combining checkpoint inhibitors with DNA-damaging chemotherapy in patients whose tumors harbor MRE11 complex mutations. For details, please see the article by Al-Ahmadie, Iyer, Hohl, and colleagues on page 1014.

AC icon indicates Author Choice
For more information please visit http://www.aacrjournals.org

ON THE COVER

Using whole-genome sequencing, Al-Ahmadie, Iyer, Hohl, and colleagues identified a clonal hemizygous RAD50^{L1237F} mutation in an outlier patient with metastatic small-cell ureter cancer who achieved a complete and durable response to treatment with a checkpoint kinase 1 inhibitor and irinotecan. RAD50^{L1237F} was accompanied by LOH of the wild-type allele and mutated a highly conserved residue required for proper MRE11 complex function in DNA repair. RAD50 mutation impaired activation of ataxia telangiectasia mutated (ATM) signaling, leading to a synthetic lethal effect when checkpoint inhibition was combined with DNA-damaging chemotherapy. These findings highlight the utility of this approach to dissect tumor-specific dependencies and provide a rationale for combining checkpoint inhibitors with DNA-damaging chemotherapy in patients whose tumors harbor MRE11 complex mutations. For details, please see the article by Al-Ahmadie, Iyer, Hohl, and colleagues on page 1014.
CANCER DISCOVERY

4 (9)

Cancer Discovery 2014;4:OF6-1101.

| Updated version | Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/4/9 |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/4/9. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.