IN THIS ISSUE

| Highlighted research articles | 453 |

NEWS IN BRIEF

| FDA Approves First Biosimilar, Zarxio | 460 |

NEWS IN DEPTH

| Important news stories affecting the community | 456 |

RESEARCH WATCH

| Selected highlights of recent articles of exceptional significance from the cancer literature | 461 |

ONLINE

| For more News and Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org. |

VIEWS

- **In The Spotlight**
 - RA12: Linking Retinoic Acid Signaling with Metastasis Suppression | 466
 - M. Esposito and Y. Kang
 - See article, p. 506
 - Tumor Twitter: Cellular Communication in the Breast Cancer Stem Cell Niche | 469
 - M.D. Brooks and M.S. Wicha
 - See article, p. 520
 - Understanding the MIG6–EGFR Signaling Axis in Lung Tumorigenesis | 472
 - E. Izumchenko and D. Sidransky
 - See article, p. 534

REVIEW

- The BCL2 Family: Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics | 475
 - A.N. Hata, J.A. Engelman, and A.C. Faber

RESEARCH ARTICLES

- **Genomic Complexity Profiling Reveals That HORMAD1 Overexpression Contributes to Homologous Recombination Deficiency in Triple-Negative Breast Cancers** | 488
 - Précis: The meiotic protein HORMAD1 is aberrantly expressed in a subset of triple-negative breast cancers and drives allelic imbalance by suppressing RAD51-dependent homologous recombination.

- **Suppression of Early Hematogenous Dissemination of Human Breast Cancer Cells to Bone Marrow by Retinoic Acid–Induced 2** | 506
 - Précis: Retinoic acid–induced 2 (RAI2) maintains the differentiation of luminal breast epithelial cells and is a suppressor of early occurring bone metastasis in ERα-positive breast cancer.
 - See commentary, p. 466

- **Intratumoral Heterogeneity in a Trp53-Null Mouse Model of Human Breast Cancer** | 520
 - Précis: Paracrine WNT signaling between subpopulations of tumor cells promotes tumor-initiating cell self-renewal and tumorigenicity in a Trp53-null mouse model of breast cancer.
 - See commentary, p. 469
Loss of MIG6 Accelerates Initiation and Progression of Mutant Epidermal Growth Factor Receptor–Driven Lung Adenocarcinoma 534
Précis: MIG6 functions as a tumor suppressor in mutant EGFR–driven lung cancer, and its inhibitory function may be reversed by mutant EGFR–mediated hyperphosphorylation.

See commentary, p. 472

Suppression of CHK1 by ETS Family Members Promotes DNA Damage Response Bypass and Tumorigenesis 550
Précis: ETS factors transcriptionally repress CHK1, resulting in accumulation of DNA damage, accelerated prostate cancer progression, and enhanced sensitivity of prostate cancer cells to etoposide.