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to genomic stability by maintaining replication fork integrity 

( 42 ), suppressing inappropriate fi ring of late or cryptic DNA 

replication origins ( 43 ), and promoting homologous recombi-

nation DNA damage repair ( 11 ), we tested whether reduction 

of CHK1 levels might be detrimental for prostate tumor cells 

when treated with agents directly targeting the replication 

machinery ( 9 ,  51 ). RWPE-1, VCaP, LNCaP, 22RV1, and PC3 

prostate cell lines stably expressing shControl and sh CHK1  499  

were treated with 20 μmol/L etoposide for 48 hours. Untreated 

cells served as the control. Annexin V/7-Aminoactinomycin 

D (7-AAD) fl ow cytometric analysis defi ned the PC3 cell line 

as completely resistant to etoposide treatment, whereas VCaP, 

LNCaP, 22RV1, and RWPE1 cells showed a robust apoptotic 

response (Fig.   4B , upper and lower quadrants on the right in 

the plots; orange and green bars in the graphs) . RWPE1 was 

the most sensitive to etoposide among the prostate cell lines 

tested, probably as a consequence of the fact that RWPE1 cells 

are immortalized normal prostate epithelial cells and not tumor 

cells. CHK1 downregulation, however, did not change the 

amount of apoptotic RWPE1 cells after etoposide treatment 

 Figure 4.      CHK1 levels dictate 
etoposide sensitivity in prostate 
cancer cell lines bearing a func-
tional p53 pathway. A, Western blot
analysis comparing the levels of 
PARP (total and cleaved), CHK1, and 
γH2AX in shControl (shC), sh CHK1  499 , 
and sh CHK1  501  stable LNCaP, 22RV1, 
PC3, VCaP, and RWPE1 prostate cell 
lines. GAPDH was used as loading 
control. B, FACS analysis of Annexin 
V/7-AAD staining showing the 
amount of apoptotic cells in shCon-
trol (shCTR) and sh Chk1  499  VCaP, 
RWPE1, PC3, 22RV1, and LNCaP 
stable cell lines treated with 20 
μmol/L of etoposide for 48 hours. 
Experiments were performed in 
triplicate; data were analyzed 
using an unpaired  t  test. Values of 
 P  < 0.05 were considered statisti-
cally signifi cant (*,  P  < 0.05; **, 
 P  < 0.01). 7-AAD, 7-Aminoactino-
mycin D.   
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(Fig.  4B ). VCaP, 22RV1, and LNCaP showed comparable sensi-

tivity to etoposide (orange bars); CHK1 downregulation, how-

ever, signifi cantly increased the percentage of apoptotic cells 

in LNCaP and 22RV1, whereas it did not affect the response to 

etoposide in VCaP (Fig.  4B , quadrants on the right in the plot; 

red and green bars in the graphs). The differential sensitivity 

to etoposide after CHK1 knockdown of LNCaP and 22RV1 

compared with VCaP cells might be reconciled by the status of 

TP53 among these three different prostate cell lines. Indeed , 

whereas LNCaP cells have both  TP53  alleles wild-type and 

22RV1, one allele wild-type and one expressing a mutant form 

of TP53 (Q331R) mildly affecting TP53 activity, VCaP cells are 

characterized by a dysfunctional TP53 pathway expressing a 

classic hotspot mutation of TP53 (R248W; ref.  52 ).  

 Finally, to understand if CHK1 levels might infl uence 

sensitivity to other types of drug, we treated LNCaP and 

VCaP cells stably expressing shControl and sh CHK1  499  with 

docetaxel, a widely used standard-of-care therapy for prostate 

 Figure 5.      CHK1 downregulation  does not improve docetaxel effi cacy. A, FACS analysis of Annexin V/7-AAD staining showing the amount of apoptotic 
cells in shControl (shCTR) and sh CHK1  499  VCaP and LNCaP stable cell lines treated with 0.2 nmol/L of docetaxel for 48 hours. Experiments were per-
formed in triplicate, and data were analyzed using an unpaired  t  test. Values of  P  < 0.05 were considered statistically signifi cant. B, model summarizing 
the cooperative contribution of PTEN heterozygosity and ERG expression to prostate cancer progression and the potential sensitivity of these tumors to 
specifi c drug regimens.   
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cancer. As shown in  Fig. 5A , downregulation of CHK1 did not 

sensitize either LNCaP or VCaP cells to docetaxel treatment.  

 Overall, these results strongly support the concept that 

reduction of CHK1 levels renders prostate tumor cells bear-

ing functional TP53 specifi cally sensitive to genotoxic agents 

targeting the DNA replication machinery and causing stall-

ing of replication forks, such as etoposide.    

 DISCUSSION 
 ETS family members have been implicated in tumors of 

various histologies, including leukemia, sarcoma, and prostate 

cancer ( 53–55 ). In particular, ERG and ETV1 have been found 

translocated and ectopically expressed in a large proportion of 

human prostate cancers (60%), a tumor type that still represents 

the second leading cause of cancer-related deaths in males in 

the United States ( 23 ,  27 ,  55, 56 ). Thus, defi ning the molecu-

lar mechanisms underlying the contribution of ETS family 

members to tumorigenesis is of great relevance, as it may also 

offer new opportunities for therapeutic intervention. Ectopic 

and aberrant overexpression of ETS proteins may conceivably 

mediate their proto-oncogenic role in tumorigenesis through 

the mis-expression of their transcriptional target genes. The 

data presented here suggest that  CHK1  may represent such a 

critical gene. ERG most likely does not initiate tumorigenesis 

in the prostate, because overexpression of ERG alone does not 

affect proliferation in a postmitotic tissue such as the prostate 

gland ( 21 ,  24 ,  57 ). Nonetheless, expression of ERG in a  Pten  

heterozygous or null background causes a more aggressive 

stage of cancer, suggesting that the genes deregulated by ERG 

become functionally relevant when cells are proliferating ( 21 , 

 24 ,  57 ). In accordance with this notion, ERG overexpression 

in human patients is more frequently observed in conjunction 

with mutations that are known to trigger proliferation, such as 

partial PTEN loss ( 24 ,  57 ,  58 ). Recently, Brenner and colleagues 

( 19 ) have associated ERG or ETV1 overexpression in prostate 

cell lines with increased numbers of γH2AX nuclear foci, which 

offers evidence of DNA damage in these cells. They have also 

described ERG in a multiprotein complex with PARP1 and 

DNAPK and have shown that this complex regulates ERG activ-

ity ( 19 ). However, the mechanism responsible for the increased 

DNA damage remained elusive. Our fi ndings provide a com-

pelling transcriptional mechanism explaining how ERG and 

other ETS family members could cause genomic instability. We 

propose that ERG overexpression may facilitate the persistence 

of mild levels of DNA damage through the downregulation of 

CHK1. Reductions in CHK1 levels have been shown to cause 

DNA damage, most likely due to impairment of the monitor-

ing of DNA integrity during replication ( 5–7 ,  11 ,  43 ,  59–62 ). 

Thus, it is conceivable that ERG-dependent DNA damage and 

consequent genomic instability might be due at least in part to 

reduced CHK1 levels and, consequently, an impaired cell-cycle 

checkpoint process during cellular proliferation. This par-

ticular condition, when associated with a hyper-proliferative 

context such as the one triggered by PTEN loss, may dictate 

increased genomic instability and the acquisition of further 

genetic lesions, which can drive prostate tumor progression 

and resistance to treatment (Fig.  5B ). 

 Importantly, our study also offers straightforward therapeu-

tic implications. Inactivating CHK1 function has been given seri-

ous consideration as a way to abrogate the cell-cycle checkpoints 

believed to account for the survival of cancer cells in response 

to chemotherapy and radiotherapy ( 63–68 ), and a number of 

CHK1 inhibitors are currently in clinical trials. Our data sug-

gest that tumors harboring elevated levels of ERG, or other 

ETS family members, may be more sensitive to specifi c classes 

of drugs targeting the replication machinery than, for instance, 

to agents such as taxanes hitting microtubule polymerization, 

in a TP53 functional context. Finally, CHK1 inhibitors, due to 

already reduced levels of CHK1, may be administered at very low 

doses in ETS-positive tumors and therefore would be extremely 

effective in a synthetically lethal approach in combination with 

radiotherapy/chemotherapy and PARP inhibitors ( 69 ).   

 METHODS  
 In Vitro  Experiments  

 HEK-293, VCaP, LNCaP, 22RV1, PC3, RWPE1, and U2OS human 

cell lines were purchased from the ATCC. Cells were tested and 

authenticated by the ATCC (DNA fi ngerprinting, karyotyping, and 

morphology) and additionally by Western blot and qRT-PCR for 

specifi c markers in our laboratory. Cells were cultured in DMEM 

or RPMI medium (as indicated by the ATCC) supplemented with 

10% FBS and tested for Mycoplasma contamination every month. 

For DHT treatments, the regular medium was replaced with regular 

medium supplemented with 10 nmol/L DHT. Lipofectamine 2000 

(Invitrogen) was used as transfection reagent.   

  Microarray Analysis  
 The human prostate cancer dataset has been previously described 

( 23 ). Briefl y, copy-number data were generated on Agilent 244KaCGH 

arrays, and mRNA expression data were obtained on Affymetrix 

Human Exon 1.0 ST arrays. The complete genome dataset and ana-

lytic methods are reported separately ( 23 ). Specimens were classifi ed 

as harboring ERG aberrant expression with a z-score greater than 

4.0. This correlated with  ERG  genetic rearrangments as identifi ed by 

comparative genomic hybridization analysis . CHK1 levels (z-score) 

were analyzed according to ERG aberrant expression status, and a 

 t  test was used to compare the mean z-score between tumors with 

ERG aberrant expression and those without. Publicly available 

expression data GSE39388 ( 22 ), GSE21032 ( 23 ), GSE14595 ( 24 ), 

GSE14097 ( 26 ), and GSE46799 ( 21 ) were obtained from the Gene 

Expression Omnibus database . Differential expression and statistical 

signifi cance have been evaluated by the Bioconductor  limma  package. 

Values of  P  < 0.05 were considered statistically signifi cant.   

  Generation of Plasmid Vectors  
 The pCMV-SPORT6-ERG (human) was purchased from Life Technol-

ogies (MHS6278-202759378). ERG cDNA was recovered by digestion 

with XhoI/SalI from pCMV-SPORT6-ERG and cloned in pBabe-puro 

by using SalI site. Human ETV1 cDNA was cloned into EcoRI site in 

pBabe-3xFlag-puro. ERG target sequences in pLKO were as follows: 

5′-CGACATCCTTCTCTCACAT-3′ (ERG-shRNA#1) and 5′-GAT

GATGTTGATAAAGCCTTA-3′ (ERG-shRNA#2). ShRNAs target-

ing human  CHK1  were purchased from Thermo Fisher Scientifi c 

(RHS4533-EG1111). pLKO-shScramble (#1864) was purchased from 

Addgene and used as a control. Smart pool siRNA for PTEN was pur-

chased from Dharmacon (siGENOME siPTEN M-003023-02-0005). 

pCDNA3.1-AR was kindly provided by Dr. Steven Balk (Beth Israel Dea-

coness Medical Center, Boston, MA). The wild-type (WT) construct 

used in luciferase reporter activity was generated by amplifying 1290 bp

upstream of the translation initiation site of  CHK1  using the follow-

ing primers: CCGGACGCGTGCACCACGAGTACCGCACTCTGAGG 

and CCGGAGATCTGACTCCACCGAGCACCTCGG. Sequences in 
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bold indicate recognition sites for MluI and BglII, respectively. This 

PCR fragment was subcloned into the MluI and BglII sites of the 

pGL2-enhancer luciferase reporter vector (Promega). The mutant 

forms of this construct were generated using the following prim-

ers and their reverse complementary oligos in site-directed muta-

genesis (Strategene) PCR reactions: for mutant F10: AAATCTCT

TCAGCCA GT CTCTCCCCGACTGCAAAG; for mutant F11: CTTC

CCCAGTCGTTCGCC AA AGCATTTGTCTCCC; for mutant Mut –1156 : 

GCCCGCAGCCCCGCCT GA GCGCAGCGCGGTCGG; for mutant 

Mut –1050 : AAATCTCTTCAGCCA GT CTCTCCCCGACTGCAAAG; and 

for mutant Mut –975 : GTCGAGCCTCACACC GT GCCACTTCATAT

TTGG. The mutated sites are shown in bold.   

  ChIP Assays  
 ChIP analysis was performed according to the Simple ChIP Enzy-

matic Chromatin IP Kit (9003; Cell Signaling Technology). Briefl y, 

5 × 10 7  VCaP cells per condition were fi xed with 1% formalde-

hyde for 10 minutes at room temperature. Relief of crosslinking 

was performed by adding 125 mmol/L glycine for 5 minutes at 

room temperature. Cells were washed twice with cold PBS 1× plus 

protease inhibitor cocktail and then were lysed with cold Buffer 

A. Collected nuclei were resuspended in cold Buffer B and then 

treated with 7 μL of micrococcal nuclease for 30 minutes at 37°C. 

Digested chromatin was sonicated and purifi ed according to the 

manufacturer’s instructions. Chromatin (100 μg) was incubated 

with the following antibodies: 3 μg of ERG (C-17 X; Santa Cruz 

Biotechnology), 3 μg of H3 (provided by the kit), 3 μg of H3K27Ac 

(Abcam; ab4729), and 3 μg of IgG (provided by the kit). The  prim-

ers used to amplify by qRT-PCR the regions containing the puta-

tive consensus DNA-binding sites of ERG in the  CHK1  promoter 

were as follows: red arrowheads, forward 5′-CCAGCAGCGCTC

GAGCACC-3′, reverse 5′-AGACAGCGCGCGTTCCCGTG-3′; black 

arrowheads, forward 5′-CAGGCGTTTTCTGCCCCATAC-3′, reverse 

5′-CTAAACCTGACCATTTTGTCG-3′; blue arrowheads, forward 

5′-CATTTCCACTTGAATGTCTAGTAG-3′, reverse 5′-CAGTGTCTT

TACTGAGGCAATTAC-3′. The primers used to amplify the regions 

containing the characterized consensus DNA-binding sites of 

ERG in  PLA1A  were as follows: forward 5′-TGGCCACCCAGAGAT

GCAGGA-3′ and reverse 5′-ACACACTGTCCCTCTTTGAGCCA-3′.   

  qRT-PCR Analysis  
 RNA was prepared from human cell lines and mouse prostates 

using the RNeasy Mini Kit (Qiagen) followed by cDNA synthesis 

using the Super Script III First-Strand Synthesis system (18080-051; 

Invitrogen) or the iScript cDNA synthesis Kit (170-8890; Bio-Rad). 

Taqman analysis was performed through the Biopolymers Facil-

ity at Harvard Medical School using probes Mm00432485_m1 for 

mouse  Chk1 , Mm00446953_m1 for mouse  Gusb ; Hs00967506_m1 for 

human  CHK1 , Hs00171666_m1 for human  ERG , Hs00951941_m1 for 

human  ETV1 , Hs99999908_m1 for human  GUSB , and Hs00984230_

m1 for human  B2M . Mouse  Gusb  and human  GUSB  and  B2M  were 

used as a control, and results were normalized against them.   

  Western Blot, Immunofl uorescence, and IHC  
 For Western blot, cell and tissue lysates were prepared with 150-RIPA 

buffer  and protease inhibitor cocktail (Roche). The following antibod-

ies were used for Western blotting: rabbit polyclonal anti-ERG (2805-1; 

1:1,000; Epitomics), rabbit polyclonal anti-ETV1 (ab81086; 1:1,000; 

Abcam), mouse monoclonal anti-CHK1 (2G1D5; 1:1,000; Cell Sig-

naling Technology), rabbit polyclonal anti-CHK2 (2662; 1:1,000; Cell 

Signaling Technology), mouse monoclonal anti-TP53 (DO1; 1:1,000; 

Santa Cruz Biotechnology), rabbit polyclonal anti-CDKN1A (C-19; 

1:1,000; Santa Cruz Biotechnology), rabbit polyclonal anti-AR (PG21; 

1:1,000; Millipore), rabbit polyclonal anti-PSA (k92110R; 1:1,000; 

Meridian Life Science), rabbit monoclonal anti-γH2AX (9718S; 1:1,000; 

Cell Signaling Technology), rabbit polyclonal anti-Lamin β1 (ab16048; 

1:5,000; Abcam), mouse monoclonal  anti–β-Actin (A5316; 1:5,000; 

Sigma Aldrich), rabbit polyclonal anti-PTEN (138G6; 1:1,000; Cell Sign-

aling Technology), rabbit polyclonal anti–phospho-AKT(S473) (9271S; 

1:1,000; Cell Signaling Technology), rabbit polyclonal anti-AKT (9272S; 

1:1,000; Cell Signaling Technology), rabbit polyclonal anti-GAPDH 

(14C10; 1:6,000; Cell Signaling Technology), and mouse monoclonal anti-

FLAG (M2; 1:3,000; Sigma Aldrich). For IHC, tissues were fi xed in 

10% formalin and embedded in paraffi n in accordance with standard 

procedures. Mouse prostate sections were stained for γH2AX (9718S; 

1:250; Cell Signaling Technology) and phospho-53BP1 (ab82550; 

1:500; Abcam). Human prostate TMA sections were stained for CHK1 

(ab40866; 1:250, EP691Y; Abcam) and ERG (ab92513, 1:250, EPR3864; 

Abcam). For immunofl uorescence, cells were fi xed in paraformaldehyde 

4% in PBS 1× for half an hour, washed in PBS 1× three times, treated 

with glycine 0.1 mol/L in PBS 1× for 1 hour, and permeabilized with 

0.1% Tryton in PBS 1× for 15 minutes. Rabbit polyclonal anti-γH2AX 

(9718S; 1:500; Cell Signaling Technology) and mouse monoclonal 

anti-ERG (C-1; 1:500; Santa Cruz Biotechnology) were used in PBS 1×.   

  Stable Cell Lines  
 Stable cell lines were generated by transduction of the indicated 

shRNAs. Twelve hours after infection, cells were washed and puro-

mycin (2 μg/mL) was added to fresh media. Selection was maintained 

for 2 weeks after transduction before cells were used for experiments. 

Stable clones were maintained under puromycin selection (0.5 μg/

mL). Stable cell lines were tested and authenticated by Western blot 

and qRT-PCR for specifi c markers in our laboratory.   

  Annexin V/7-AAD FACS Analysis  
 PC3, LNCaP, 22RV1, VCaP, and RWPE1 shControl and sh CHK1  499  

stable cell lines were plated in 6-well/multiwells (0.2 × 10 6  PC3 and 

0.5 × 10 6  LNCaP, 22RV1, VCaP, and RWPE1). Twenty-four hours later, 

20 μmol/L of etoposide or 0.2 nmol/L of docetaxel was added to the 

medium. Cells were collected 48 hours later and processed following the 

manufacturer’s instructions (Thermo Fisher Scientifi c; BDB559763).   

  Pten  +/–  , Pten  +/−  ;PB-ERG, and Pten  +/−  ;Chk1 Mutant Mice  
  Pten  +/−  (C57BL/6) and  Pten  +/−  ;PB-ERG  (C57BL/6) mice were gen-

erated as previously described ( 24 ).  Chk1  +/−  (C57BL/6) mice were 

obtained from The Jackson Laboratory following permission given 

by Dr. Stephen Elledge.  Pten  +/−  ;Chk1  +/−  mice were generated by cross-

ing  Pten  +/−  and  Chk1  +/−  mice. All mouse work was done in accordance 

with the Beth Israel Deaconess Medical Center Institutional  Animal 

Care and Use Committee protocol.   

  Cytosolic Fractionation  
 Twelve-month-old wild-type ( n  = 2) and  Pten  +/−  ( n  = 2) mice were 

sacrifi ced, and prostates were immediately extracted and processed 

for cytosolic fractionation following the manufacturer’s instructions 

(Pierce Biotechnology; 78833).   

  B- and T-Cell Staining  
 Mice were sacrifi ced at the age of 5 months, and the axillary, cervi-

cal, and inguinal lymph nodes were surgically excised. Organs were 

forced through a nylon screen to make single-cell suspensions, and 

cells were washed and resuspended in PBS with 2% FBS. Thereafter, 

cells were stained with fl uorochrome-labeled anti-CD3 phycoerythrin  

and anti-B220 FITC (Biolegend). Analysis was performed with LRS II 

(BD bioscience).   

  Histopathology  
 Murine prostate tissues were harvested and fi xed in formalin over-

night, washed in PBS, and dehydrated in Et-OH. Paraffi n embedding 
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and hematoxylin and eosin  staining were performed by the Histology 

Core Facility at the Beth Israel Deaconess Cancer Center. Parts of the 

tissues were used for proteins and RNA extraction. Histopathologic 

analysis of human prostate TMA was performed by the Pathology His-

tology Core Facility at the Icahn School of Medicine of Mount Sinai.    
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