Drug Resistance

Major finding: Mutations in the de novo purine biosynthesis enzyme PRPS1 drive thiopurine resistance in relapsed ALL.

Mechanism: PRPS1 mutants lose negative feedback of purine biosynthesis and inhibit prodrug activation.

Impact: Inhibitors of purine biosynthesis may overcome thiopurine resistance in patients with relapsed ALL.

THIOPURINE RESISTANCE IN CHILDHOOD ALL IS MEDIATED BY PRPS1 MUTATIONS

The thiopurines 6-mercaptopurine (6-MP) and 6-thioguanine (6-TG) are prodrugs that are converted to cytotoxic purine antimetabolites and administered as part of combination chemotherapy in acute lymphoblastic leukemia (ALL). Thiopurine resistance contributes to ALL relapse, a leading cause of mortality in childhood cancers. To investigate how genetic mutations contribute to ALL relapse, Li, Li, Bai, and colleagues performed whole-exome sequencing of 16 matched samples obtained at diagnosis, remission, and relapse from children with ALL, and identified relapse-specific somatic mutations in phosphoribosyl pyrophosphate synthetase 1 (PRPS1), which encodes an enzyme essential for purine biosynthesis. PRPS1 mutations were confirmed in 24 (6.7%) of 358 relapsed B-cell ALL cases in validation cohorts and were associated with early disease relapse. Ultra-deep sequencing of serial bone marrow samples demonstrated that PRPS1 mutations were not present at diagnosis and increased exponentially before clinical relapse. Expression of gain-of-function PRPS1 mutants resulted in increased viability and resistance to apoptosis after treatment with 6-MP and 6-TG, confirming that PRPS1 confers thiopurine resistance. PRPS1 drug-resistant mutants exhibited reduced nucleotide feedback inhibition of PRPS1 activity, which allowed for continued activation of de novo purine biosynthesis despite elevated intracellular nucleotide concentrations. In addition, enhanced de novo purine biosynthesis resulted in increased levels of the metabolite hypoxanthine, which competitively inhibited 6-MP conversion. Importantly, knockdown of genes that encode for de novo pathway-specific enzymes or treatment with lometrexol, a small-molecule inhibitor of de novo purine biosynthesis that is in clinical development, reversed thiopurine drug resistance in PRPS1-mutant cells. Overall, these findings demonstrate that PRPS1 mutations can drive thiopurine resistance via defective negative feedback of nucleotide biosynthesis and competitive inhibition of prodrug activation and suggest that chemotherapeutic agents that inhibit de novo purine synthesis may effectively overcome thiopurine resistance in relapsed childhood ALL.

Drug Discovery

Major finding: Targeting protein domain-encoding exons in CRISPR–Cas9 screens can reveal genetic dependencies.

Concept: Protein domain functional importance may be inferred from negative selection in a CRISPR–Cas9 screen.

Impact: The identification of protein domains required for cancer cell survival may guide drug target discovery.

DOMAIN-FOCUSED CRISPR SCREENING IDENTIFIES POTENTIAL DRUG TARGETS

CRISPR–Cas9-mediated genome editing has emerged as a useful tool to generate gene-specific knockouts. Genetic screens using the CRISPR–Cas9 technology can be performed using a library of single guide RNAs (sgRNA) that target the Cas9 endonuclease to specific loci, but sgRNA libraries typically target only 5′ coding exons and may not always cause a phenotype, particularly if functional in-frame variants are produced. In their efforts to use CRISPR–Cas9-induced mutagenesis to identify essential genes in a murine acute myeloid leukemia (AML) cell line, Shi and colleagues observed that the degree of negative selection varied greatly among sgRNAs targeting the same gene. For example, severe negative-selection phenotypes were restricted to sgRNAs targeting the sequence within Brd4 that encodes the bromodomains or the sequence within Smarca4 that encodes the ATPase domain. Targeting catalytic domains of other essential genes also led to greater negative selection than targeting 5′ coding exons. Hypothesizing that a negative-selection CRISPR–Cas9 screening strategy exclusively targeting sequences encoding protein domains could identify those required for AML cell growth and survival, the authors designed an sgRNA library that specifically targeted sequences encoding chromatin regulatory domains. Of 192 domains targeted, strong negative selection was observed for 25 domains, many of which had not previously been identified as essential in leukemic cells. A negative-selection screening strategy using sgRNA libraries designed to target potentially druggable protein domains may thus help guide identification and prioritization of drug discovery efforts.

Note: Research Watch is written by Cancer Discovery Science Writers. Readers are encouraged to consult the original articles for full details. For more Research Watch, visit Cancer Discovery online at http://CDnews.aacrjournals.org.
Domain-Focused CRISPR Screening Identifies Potential Drug Targets

Cancer Discovery 2015;5:693. Published OnlineFirst May 28, 2015.

Updated version Access the most recent version of this article at: doi:10.1158/2159-8290.CD-RW2015-101

E-mail alerts Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/5/7/693.2. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.