Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions 1315
C. Vernieri, S. Casola, M. Foiani, F. Pietrantonio, F. de Braud, and V. Longo

Acquired MET^{D1228V} Mutation and Resistance to MET Inhibition in Lung Cancer 1334
Précis: A patient with NSCLC responded to a type II MET inhibitor in combination with an EGFR TKI after acquisition of a MET^{D1228V} mutation conferred resistance to a type I MET inhibitor.
See commentary, p. 1306

Genomics of Ovarian Cancer Progression Reveals Diverse Metastatic Trajectories Including Intraepithelial Metastasis to the Fallopian Tube 1342
Précis: Multisite sequencing of high-grade serous ovarian cancers highlights genomic instability as an early event in disease progression and identifies a subset of serous tubal intraepithelial carcinomas as metastases rather than precursor lesions.
See commentary, p. 1309

Oncogenic MET as an Effective Therapeutic Target in Non–Small Cell Lung Cancer Resistant to EGFR Inhibitors: The Rise of the Phoenix 1306
L. Trusolino
See article, p. 1334

Culprit or Bystander? The Role of the Fallopian Tube in “Ovarian” High-Grade Serous Carcinoma 1309
See article, p. 1342

Making the Most of Cancer Surgery with Neoadjuvant Immunotherapy 1312
I. Melero, P. Berraondo, M.E. Rodriguez-Ruiz, and J.L. Pérez-Gracia
See article, p. 1382
Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with \textit{BRAF} V600E Mutation ... 1352
Précis: Vemurafenib plus irinotecan and cetuximab was generally well tolerated and achieved a 35% response rate in patients with \textit{BRAF} V600E metastatic colorectal cancer, and responses correlated with \textit{BRAF} V600E cfDNA levels.

TGFβ1-Mediated SMAD3 Enhances PD-1 Expression on Antigen-Specific T Cells in Cancer ... 1366
Précis: TGFβ1 promotes a SMAD3-dependent increase in PD-1 expression on TILs, suppressing antitumor immunity and increasing tumor growth in vivo.

Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease ... 1382
Précis: Neoadjuvant immunotherapy extends survival and reduces metastatic disease more effectively than adjuvant immunotherapy in mouse models of metastatic triple-negative breast cancer.
See commentary, p. 1312

Acknowledgment to Reviewers ... 1400

Correction
Correction: Molecular Heterogeneity and Receptor Coamplification Drive Resistance to Targeted Therapy in \textit{MET}-Amplified Esophagogastric Cancer 1402

Bahcall and colleagues report the case of a patient with recurrent non–small cell lung cancer (NSCLC) harboring an \textit{EGFR} exon 19 deletion mutation and high-level \textit{MET} amplification who initially responded to a type I \textit{MET} inhibitor combined with an \textit{EGFR} inhibitor but acquired a \textit{MET}D1228V mutation that promoted resistance. Protein modeling predicted that \textit{MET}D1228V would not alter sensitivity to type II \textit{MET} inhibitors, which bind the inactive conformation of \textit{MET}. Consequently, the patient was treated with a type II \textit{MET} inhibitor combined with an \textit{EGFR} inhibitor and achieved an ongoing response. These results indicate that \textit{MET} may be therapeutically targeted in NSCLC, and type II \textit{MET} inhibitor sensitivity may be maintained even in cells resistant to type I \textit{MET} inhibitors. Therefore, determining \textit{MET} inhibitor resistance mechanisms may guide drug selection in patients. For details, please see the article by Bahcall and colleagues on page 1334.