CONTENTS

DECEMBER 2016
VOLUME 6
NUMBER 12

IN THIS ISSUE
Highlighted research articles .. 1293

NEWS IN BRIEF
Important news stories affecting the community 1296

NEWS IN DEPTH
Q&A: Omid Farokhzad on Nanomedicine in Cancer 1300

RESEARCH WATCH
Selected highlights of recent articles of exceptional significance from the cancer literature 1301

ONLINE
For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/content/early/by/section.

VIEWS
In The Spotlight

Oncogenic MET as an Effective Therapeutic Target in Non–Small Cell Lung Cancer Resistant to EGFR Inhibitors: The Rise of the Phoenix 1306

L. Trusolino
See article, p. 1334

Culprit or Bystander? The Role of the Fallopian Tube in “Ovarian” High-Grade Serous Carcinoma 1309

See article, p. 1342

Making the Most of Cancer Surgery with Neoadjuvant Immunotherapy 1312

I. Melero, P. Berraondo, M.E. Rodriguez-Ruiz, and J.L. Pérez-Gracia
See article, p. 1382

REVIEW
Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions 1315

C. Vernieri, S. Casola, M. Foiani, F. Pietrantonio, F. de Braud, and V. Longo

RESEARCH BRIEFS
Acquired MET^{D1228V} Mutation and Resistance to MET Inhibition in Lung Cancer 1334

Précis: A patient with NSCLC responded to a type II MET inhibitor in combination with an EGFR TKI after acquisition of a MET^{D1228V} mutation conferred resistance to a type I MET inhibitor.
See commentary, p. 1306

Genomics of Ovarian Cancer Progression Reveals Diverse Metastatic Trajectories Including Intraepithelial Metastasis to the Fallopian Tube 1342

Précis: Multisite sequencing of high-grade serous ovarian cancers highlights genomic instability as an early event in disease progression and identifies a subset of serous tubal intraepithelial carcinomas as metastases rather than precursor lesions.
See commentary, p. 1309
Phase IB Study of Vemurafenib in Combination with Irinotecan and Cetuximab in Patients with Metastatic Colorectal Cancer with BRAF V600E Mutation

Précis: Vemurafenib plus irinotecan and cetuximab was generally well tolerated and achieved a 35% response rate in patients with BRAF V600E metastatic colorectal cancer, and responses correlated with BRAF V600E cfDNA levels.

TGFβ1-Mediated SMAD3 Enhances PD-1 Expression on Antigen-Specific T Cells in Cancer

Précis: TGFβ1 promotes a SMAD3-dependent increase in PD-1 expression on TILs, suppressing antitumor immunity and increasing tumor growth in vivo.

Improved Efficacy of Neoadjuvant Compared to Adjuvant Immunotherapy to Eradicate Metastatic Disease

Précis: Neoadjuvant immunotherapy extends survival and reduces metastatic disease more effectively than adjuvant immunotherapy in mouse models of metastatic triple-negative breast cancer.

See commentary, p. 1312

Acknowledgment to Reviewers

Correction

Correction: Molecular Heterogeneity and Receptor Coamplification Drive Resistance to Targeted Therapy in MET-Amplified Esophagogastric Cancer

AC icon indicates Author Choice

For more information please visit http://www.aacrjournals.org

Bahcall and colleagues report the case of a patient with recurrent non–small cell lung cancer (NSCLC) harboring an EGFR exon 19 deletion mutation and high-level MET amplification who initially responded to a type I MET inhibitor combined with an EGFR inhibitor but acquired a MET D1228V mutation that promoted resistance. Protein modeling predicted that MET D1228V would not alter sensitivity to type II MET inhibitors, which bind the inactive conformation of MET. Consequently, the patient was treated with a type II MET inhibitor combined with an EGFR inhibitor and achieved an ongoing response. These results indicate that MET may be therapeutically targeted in NSCLC, and type II MET inhibitor sensitivity may be maintained even in cells resistant to type I MET inhibitors. Therefore, determining MET inhibitor resistance mechanisms may guide drug selection in patients. For details, please see the article by Bahcall and colleagues on page 1334.
CANCER DISCOVERY

6 (12)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/6/12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/6/12. Click on "Request Permissions" which will take you to the Copyright Clearance Center’s (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>