**NEWS IN BRIEF**

Important news stories affecting the community ..........112

**RESEARCH BRIEFS**

Tumor Heterogeneity and Lesion-Specific Response to Targeted Therapy in Colorectal Cancer ..........147

Précis: Acquisition of distinct resistance mechanisms in individual metastases within the same patient can result in differential responses to subsequent targeted therapies between lesions.

See commentary, p. 122

Diverse and Targetable Kinase Alterations Drive Histiocytic Neoplasms ..........154

Précis: Recurrent kinase fusion proteins involving BRAF, ALK, and NTRK1 and activating MAP2K1 and ARAF mutations were identified in BRAFV600E–wild-type histiocytic neoplasms, sensitizing cells to kinase inhibitors.

**REVIEW**

Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors ..........133
A. Morello, M. Sadelain, and P.S. Adusumilli

**IN FOCUS**

DNA-Guided Precision Medicine for Cancer: A Case of Irrational Exuberance? ..........130
E.E. Voest and R. Bernards

**IN THIS ISSUE**

Highlighted research articles .........................109

**IN THE SPOTLIGHT**

Pruning Cancer’s Evolutionary Tree with Lesion-Directed Therapy ...............122
C.T. Hiley and C. Swanton

See article, p. 147

Adenoid Cystic Carcinoma Can Be Driven by MYB or MYBL1 Rearrangements: New Insights into MYB and Tumor Biology ............125
T.J. Gonda and R.G. Ramsay

See article, p. 176

Immunotherapy and Oncogenic Pathways: The PTEN Connection ..........128
N.A. Rizvi and T.A. Chan

See article, p. 202

In Focus

DNA-Guided Precision Medicine for Cancer: A Case of Irrational Exuberance? ..........130
E.E. Voest and R. Bernards

**ONLINE**

For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/content/early/by/section.
Whole Genome Sequencing Defines the Genetic Heterogeneity of Familial Pancreatic Cancer ................. 166


Précis: Germline whole-genome sequencing of a large cohort of patients with familial pancreatic cancer identified candidate susceptibility genes and revealed high genetic heterogeneity.

Recurrent Fusions in MYB and MYBL1 Define a Common, Transcription Factor–Driven Oncogenic Pathway in Salivary Gland Adenoid Cystic Carcinoma ........... 176

K.J. Brayer, C.A. Frerich, H. Kang, and S.A. Ness

Précis: RNA-sequencing analysis of adenoid cystic carcinomas detected a recurrent translocation fusing MYB to NFIB as well as translocations fusing MYBL1 to NFIB or RAD51B, and demonstrated that these MYB and MYBL1 fusions are interchangeable oncogenic drivers.

See commentary, p. 125

AC icon indicates Author Choice
For more information please visit http://www.aacrjournals.org

Stromal Expression of miR-143/145 Promotes Neoangiogenesis in Lung Cancer Development ................. 188

N. Dimitrova, V. Gocheva, A. Bhutkar, R. Resnick, R.M. Jong, J.M. Miller, J. Bendor, and T. Jacks

Précis: Autochthonous mouse models of lung cancer show that normal lung endothelial cell expression of miR-143/145 promotes tumor development by driving neoangiogenesis.

Loss of PTEN Promotes Resistance to T Cell–Mediated Immunotherapy ................. 202


Précis: PTEN loss reduces T-cell infiltration and drives immunotherapy resistance in melanoma by increasing immunosuppressive cytokine production and inhibiting autophagy.

See commentary, p. 128

The molecular mechanisms that promote resistance to T cell–mediated immunotherapy in patients with melanoma remain unclear. Peng and colleagues found that loss of PTEN in melanoma cells suppressed T cell–driven antitumor responses both in vitro and in vivo. Consistent with this finding, PTEN-negative melanomas exhibited impaired infiltration and function of CD8+ T cells and decreased sensitivity to immunotherapy. This immune-suppressive effect was mediated by upregulation of the expression of immunosuppressive cytokines and inhibition of autophagy in the absence of PTEN. Selective inhibition of the PI3Kβ isoform restored the sensitivity of PTEN-null melanoma cells to T cell–mediated immunotherapy. These results support the notion that loss of PTEN drives resistance to immunotherapy in melanoma and suggest that combined treatment with PI3K–AKT inhibitors may enhance the clinical efficacy of immunotherapies. For details, please see the article by Peng and colleagues on page 202.