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 Figure 3.      Expression of IL35 by B cells is functionally important for sustaining growth of  Kras G12D  -PDEC  in vivo . A, levels of  Il12a  mRNA in immune 
cells from spleen or pancreata of  p48 Cre   (control) or  KC  mice were assessed by quantitative RT-PCR ( n  = 9  Trp48 Cre  ,  n  = 9  KC ). B, levels of  Il12a  mRNA in 
CD19 + CD1d hi CD5 +  and CD19 + CD1d lo CD5 −  subpopulations of B cells sorted from pancreata of  KC  mice were assessed by quantitative RT-PCR ( n  = 9  KC ). 
C, levels of  Ebi3  mRNA in B cells and non-B cells from pancreata of  KC  mice were assessed by quantitative RT-PCR ( n  = 9  KC ). D, levels of  Ebi3  mRNA in 
CD19 + CD1d hi CD5 +  and CD19 + CD1d lo CD5 −  subpopulations of B cells sorted from pancreata of  KC  mice were assessed by quantitative RT-PCR ( n  = 9  KC ). 
E, immuno” uorescence staining for p35 and CD20 in samples of human pancreatic cancer containing PanIN lesions. Scale bars, 10 μm (top) and 20 μm 
(bottom). Two independent “ elds of view (FOV) are shown. F, immuno” uorescence staining for p35 and B220 in samples of  KC  pancreata. Scale bars, 
20 μm. Two independent “ elds of view are shown. G, sections from orthotopic pancreatic grafts 2 weeks after GFP- Kras G12D  -PDEC implantation into WT 
or μ MT  mice were stained with hematoxylin and eosin (H&E) or anti-GFP antibody. Where indicated, μ MT  mice were reconstituted with WT B cells or with 
 Il12a  −/−   B cells 2 days prior to orthotopic implantation. Representative images are shown. Scale bars, 100 μm. H, graph depicts quanti“ cation of the data 
from G indicating the average fraction of GFP +  area per “ eld of view of the implant (10 “ elds of view per animal;  n  = 9 WT,  n  = 9 μ MT ,  n  = 9 μ MT +WT B 
cell,  n  = 9 μ MT + Il12a  −/−   B cell animals). I, IHC staining for phospho-Histone H3 (pHH3) of GFP- Kras G12D  -PDEC implanted into mice as described in G above. 
Representative images are shown. Scale bars, 50 μm. J, graph depicts quanti“ cation of the data in I and indicates the fraction of phospho-Histone H3 +  
signal in epithelial cells (10 “ elds of view per animal;  n  = 6 WT,  n  = 6 μ MT ,  n  = 6 μ MT +WT B cell,  n  = 6 μ MT + Il12a  −/−   B-cell animals). Error bars indicate SEM 
in A, SD in B–D, H, and J;  P  values were determined by the Student  t  test (unpaired, two-tailed); *,  P  < 0.05; **,  P  < 0.01; ***,  P  < 0.001.   
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pancreatic cancer milieu, and inhibition of TLR4 protects 

against pancreatic cancer ( 8 ). Although we have shown that 

IL35 can stimulate the proliferation of tumor cells, one of 

the IL35 receptors, gp130 ( 22 ), is expressed on the surface of 

multiple immune cell types ( 26 ). Thus, the effects of IL35 are 

likely to be exerted through a network of interactions involv-

ing tumor and stromal cells. 

 To date, the evidence for B-cell function in PDAC has 

been scarce and seemingly contradictory. Whereas infi ltra-

tion of the CD20 +  tumor-associated pan–B-cell population 

has been shown to correlate with better survival prognosis 

( 27 ), elevated levels of B-cell–activating factor have been 

reported to correlate with metastatic propensity ( 28 ). These 

fi ndings are in line with the increasing appreciation of the 

multifaceted role that B cells play in tumorigenesis. As part 

of the adaptive immune system, B cells harbor the potential 

to mediate antitumor responses by facilitating antigen pres-

entation, effective priming of T cells, and antitumor antibody 

production ( 29, 30 ). On the other hand, B cells have been 

shown to contribute to tumorigenesis by promoting alterna-

tive macrophage activation (via deposition of immune com-

plexes) and dampening T-cell–mediated antitumor response 

(B regulatory function; refs.  14 ,  31 ). The fi ndings described 

in this study, along with those reported by Gunderson and 

colleagues ( 12 ) and Lee and colleagues ( 13 ), illustrate that, 

depending on biologic context, the protumorigenic effects 

of B cells could be mediated by distinct B-cell populations. 

Thus, we have shown that IL35-producing B cells are required 

to support growth of early pancreatic neoplasia. Gunderson 

and colleagues ( 12 ) have demonstrated that, in the setting of 

advanced disease, the protumorigenic role of B cells can be 

mediated by the engagement of FcRγ on tumor-associated 

macrophages, resulting in their T H2  reprogramming. Lastly, 

Lee and colleagues ( 13 ) have reported an increase in B1b cells 

in mouse neoplastic lesions that is further amplifi ed upon 

loss of HIF1α, indicating that expansion of this B-cell subset 

might be uniquely controlled by oxygen-sensing mechanisms. 

Functional dissection of how these various B-cell–dependent 

effector mechanisms are orchestrated would enable the full 

delineation of the role of B cells in the development and 

maintenance of pancreatic tumors.   

 METHODS  
  Animal Models  

 The  LSL - Kras G12D  ,  Pdx1 Cre  , and  p48 Cre   strains have been described pre-

viously ( 3, 11 ). C57BL/6 mice used for orthotopic injections and isola-

tion of B cells for adoptive transfers were obtained from Charles River 

Laboratories. Randomization methods or inclusion/exclusion criteria 

were not used to allocate animals to experimental groups. Researchers 

were not blinded to the experimental groups while conducting surger-

ies, as well as during data collection for orthotopic transplantation 

into WT and μ MT  mice (due to very apparent spleen size differences 

upon organ harvest and B-cell differences in fl ow cytometry experi-

ments). Data collection for orthotopic transplantation into μ MT  mice 

supplemented with B cells of various genotypes was conducted blindly. 

Orthotopic implantation of PDEC was performed as described previ-

ously ( 3 ). Both female and male mice were used in the studies. In the 

setting of orthotopic injection, GFP- Kras G12D  -PDEC were injected at 

1 × 10 6  cells/mouse pancreas, and  KPC  cells were injected at 7.5 × 10 4  

cells/mouse pancreas. B-cell–defi cient μ MT  mice,  Il10  −/−  and  Il12a  −/−  

animals were obtained from The Jackson Laboratory (strains #002288, 

002251, and 002692, respectively). All animal care and procedures were 

approved by the Institutional Animal Care and Use Committee at the 

New York University (NYU) School of Medicine.   

  Isolation, Culture, and Infection of PDEC  
 Isolation, culture, and adenoviral infection of PDEC were carried 

out as previously described ( 32 ). The  KPC  cell line (line 4662) was 

a kind gift from Dr. R.H. Vonderheide. Primary cell lines were not 

authenticated and were tested for  Mycoplasma  contamination every 4 

months. To generate GFP-labeled PDEC lines, the cells were infected 

with pLVTHM-GFP virus as described in ref.  3 . Briefl y, lentivirus 

was generated by transfecting HEK-293T cells with the vector, the 

packaging construct (psPAX2), and the envelope plasmid (pMD2G). 

Supernatants containing viral particles were collected over a period 

of 48 hours. Following fi nal collection, supernatants were fi ltered 

through a 0.45-μm syringe fi lter and concentrated using 100 MWCO 

Amicon Ultra centrifugal fi lters (Millipore).   

  Adoptive Transfer of B Cells  
 Spleens of WT C57BL/6 mice (2–3 months of age; Charles River 

Laboratories) were mechanically dissociated; a single-cell suspen-

sion was made in 1% FBS/PBS, passed through a 70-μm strainer 

(BD Falcon), and treated with RBC lysis buffer (eBioscience). B 

cells were purifi ed using CD45R-linked MACS beads (Miltenyi) 

using LS columns according to the manufacturer's instructions. 

Enrichment of B cells was confi rmed by fl ow cytometry using 

FITC-CD19 (6D5, #115505; Biolegend). Viability and numbers 

of purifi ed B cells were assessed using Nexcelom Cellometer Auto 

2000 viability counter. Purifi ed cells were then washed in cold 

PBS and injected retro-orbitally into recipient mice (7 × 10 6  cells/

mouse in 100 μL volume (WT,  Il10  −/−  and  Il12a  −/−  B cells) or 1.5 × 

10 6  cells/mouse in 100 μL volume (CD19 + CD1d hi CD5 +  and CD19 + 

CD1d lo CD5 − ).   

  Quantitative RT-PCR  
 For RNA isolation, cells were enriched into B-cell and non–B-

cell populations, as well as immune and nonimmune cells using 

CD45R-linked or CD45-linked MACS beads (Miltenyi). Flow through 

fractions yielded non-B cells and nonimmune cells, respectively. 

Cells were then further processed by FACS: CD19 + CD1d hi CD5 +  

and CD19 + CD1d lo CD5 −  B cells; CD45 − CD140a +  fi broblasts and 

CD45 − CD140a −  nonfi broblasts as well as CD45 + CD11c +  dendritic 

cells were FACS sorted using a 100-μm nozzle from 3-to-6-month-

old  KC  mice pancreata (or spleens for dendritic cells) into the lysing 

reagent TRIzol (Invitrogen), and total RNA was extracted as per 

the manufacturer's instructions (RNeasy Mini Kit; QIAGEN). Total 

RNA (1 μg) was reverse-transcribed using the Quantitect Reverse 

Transcription Kit (Qiagen). Subsequently, specifi c transcripts were 

amplifi ed by SYBR Green PCR Master Mix (USB) using a Stratagene 

Mx 3005P thermocycler. Where fold expression is specifi ed, compara-

tive CT method was used to quantify gene expression. Where relative 

expression is specifi ed, standard curve method was used to quantify 

gene expression. Expression was normalized to GAPDH. 

 Primers  used for QPCR are as follows:  GAPDH  forward: CACG

GCAAATTCAACGGCACAGTC, reverse: ACCCGTTTGGCTCCACCC

TTCA;  CXCL13  forward: GTAACCATTTGGCACGAGGATT, reverse: 

AATGAGGCTCAGCACAGCAA;  IL12a  forward: CATCGATGAGCT

GATGCAGT, reverse: CAGATAGCCCATCACCCTGT;  Ebi3  forward: 

TGCTCTTCCTGTCACTTGCC, reverse: CGGGATACCGAGAAGC

ATGG;  IL10  forward: CAGTACAGCCGGGAAGACAA, reverse: CCTG

GGGCATCACTTCTACC;  IL12b  forward: CAGCAAGTGGGCAT-

GTGTTC, reverse: TTGGGGGACTCTTCCATCCT;  IL27  forward: 

TGTCCACAGCTTTGCTGAAT, reverse: CCGAAGTGTGGTAGC

GAGG.   
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  Human Pancreas Specimens  
 For the purposes of analyzing B-cell infiltration pattern and 

CXCL13 expression pattern, we examined 10 samples contain-

ing PanIN lesions and 10 samples containing PDAC lesions (20 

samples total). Samples consisted of 5-μm sections that were cut 

from formalin-fixed, paraffin embedded (FFPE) blocks provided 

by the Tissue Acquisition and Biorepository Service of the NYU 

School of Medicine. This study was conducted in accordance with 

the Declaration of Helsinki; all samples were anonymized prior to 

being transferred to the investigator’s laboratory and therefore 

met exempt human subject research criteria.   

  Histology and Immunohistochemistry  
 Mouse pancreata were fi xed and processed for histology and 

immunohistochemistry (IHC) as described previously ( 3 ). The IHC 

protocol was modifi ed to detect mouse and human CXCL13, where 

blocking was done in 1× bovine-free blocking solution (Vector) sup-

plemented with 0.5% Tween-20 and 10% serum for 1 hour at room 

temperature, followed by incubation with the primary antibody 

diluted in 1× bovine-free blocking solution overnight at 4°C. Sec-

ondary biotinylated rabbit–anti-goat antibody (Vector) was diluted 

in 1× bovine-free blocking solution as well. The following primary 

antibodies were used: rabbit anti-GFP (#2956S; Cell Signaling Tech-

nology), rat anti-B220 (#BDB557390; Fisher), rabbit–anti-vimentin 

(#5741P; Cell Signaling Technology), mouse–anti-CD20 (#555677; 

BD Pharmingen), rabbit–anti-phospho Histone H3 (#06-570; Milli-

pore), and goat–anti-mouse CXCL13 and goat–anti-human CXCL13 

(#AF470 and # AF801, both from R&D systems). At least 9 mice per 

experimental condition were analyzed for GFP staining, and 6 mice 

per condition were analyzed for pHH3 staining. Slides were examined 

on a Nikon Eclipse 80i microscope.   

  Immunofl uorescence  
 For paraffi n sections, FFPE  sections were deparaffi nized and rehy-

drated, permeabilized with TBS/0.1% Tween-20 and washed in PBS. 

Citrate buffer antigen retrieval (10 mmol/L  sodium citrate/0.05% 

Tween-20, pH 6.0) was performed in a microwave for 15 minutes. 

Blocking was performed in 10% serum/1% BSA/0.5% Tween-20/PBS 

for 1 hour at room temperature. Primary antibodies were diluted 

in 2% BSA/0.5% Tween-20/PBS and incubated on sections over-

night at 4°C. Secondary antibodies (Alexa Fluor–labeled; Invitrogen) 

were diluted in 2% BSA/PBS for 1 hour at room temperature. Sec-

tions were washed with PBS and stained with DAPI. The following 

primary antibodies were used: goat–anti-mouse CXCL13 (#AF470; 

R&D Systems), rabbit-anti-vimentin (#5741P; Cell Signaling Tech-

nology), mouse–anti-CD20 (#555677; BD Pharmingen), anti-IL12a 

(#LS-B9481; LS Bio), anti-B220 (#BDB557390; Fisher), anti-IL10 

(#bs-0698R; Bioss), and anti-CD19 (#550284; BD Pharmingen). For 

frozen sections, staining was performed as described in ref.  3  using 

the following primary antibodies: anti-IL12a (#LS-B9481; LS Bio) 

and anti-B220 (#BDB557390; BD Pharmingen). Slides were exam-

ined using AxioVision v4.7 (Zeiss) software on a Zeiss Axiovert 200M 

microscope.   

  Flow Cytometry  
 Cellular suspensions from the tissues were prepared as described 

previously in ref.  2 . The following antibodies were used: anti-CD19 

(1D3, #45-0193-80; eBioscience), anti-B220 (RA3-6B2, #RM2630; 

Life Technologies), anti-CD45 (104, #109825; Biolegend), anti-CD1d 

(1B1, #123507; Biolegend), anti-CD140 (APA5, #135905; Biolegend), 

anti-CD21 (7E9, #123419; Biolegend), anti-CD5 (53-7.3, #100607; 

Biolegend), anti-AA4.1 (#17-5892; eBioscience), anti-CD138 (281-2, 

#142505; Biolegend), anti-CD206 (C068C2; Biolegend), anti-CD86 

(GL-1; Biolegend), anti–F4-80 (BM8; Biolegend), and anti-CD11b (M1-

70; Biolegend). Dead cells were excluded by staining with propidium 

iodide (Sigma-Aldrich) or Aqua Live/Dead stain. Flow cytometry was 

performed on FACScalibur and LSRII II (BD Biosciences) instruments 

at the NYU School of Medicine Flow Cytometry Core Facility, and data 

were analyzed using FlowJo software.   

  Blockade of CXCL13  
 For CXCL13 neutralization experiments, anti-CXCL13 or a control 

IgG antibody (both from R&D Systems) was injected at a concentra-

tion of 200 μg/mouse ( 10 ). For experiments using  KC  animals, injec-

tions were performed twice per week for 1 week. For experiments 

using orthotopically implanted animals, mice were injected with the 

antibodies 2 days prior to implantation and then every 4 days after 

implantation for a total duration of 2 weeks.   

  Statistical Analyses  
 Data are presented as mean ± SD or SEM, as indicated. The 

experiments were repeated a minimum of three times to demon-

strate reproducibility. In estimating orthotopic tumor size based 

on our previous data, the SD for our dependent variable is 2 units 

in WT mice. We would be interested in any differences between 

strains greater than 4 units. Assuming equal variability and sam-

ple size in the two strains, a two-tailed alpha of 0.05, and power 

of 0.80, we determined that we would need about 5 to 6 animals 

per group to detect an effect as small as 0.5 SD units. Variance 

was similar between the groups that were being statistically com-

pared. Data were analyzed by the Microsoft Excel built-in  t  test 

(unpaired, two-tailed), and results were considered significant at 

 P  value < 0.05.    
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