IN THIS ISSUE

Highlighted research articles 331

NEWS IN BRIEF

Important news stories affecting the community 334

NEWS IN DEPTH

Boosting the Potency of T-cell Therapies 338

RESEARCH WATCH

Selected highlights of recent articles of exceptional significance from the cancer literature 339

ONLINE

For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/content/early/by/section.

VIEWS

In The Spotlight

Molecular Mechanism of Mutant CALR–Mediated Transformation 344
R.F. Stanley and U. Steidl
See article, p. 368

STAT5 Loss Awakens the Dark Force in Natural Killer Cells 347
J. Ni and A. Cerwenka
See article, p. 414

Lifting Up the HAT: Synthetic Lethal Screening Reveals a Novel Vulnerability at the CBP–p300 Axis 350
C. Kadoch
See article, p. 430

REVIEW

Targeting CDK4 and CDK6: From Discovery to Therapy 353
C.J. Sherr, D. Beach, and G.I. Shapiro

RESEARCH ARTICLES

Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation 368
Précis: Mutant CALR alone is sufficient to induce myeloproliferative neoplasia and requires the mutant CALR C-terminus to transform cells via a thrombopoietin receptor–dependent activation of JAK–STAT signaling.
See commentary, p. 344

Reduced Proteolytic Shedding of Receptor Tyrosine Kinases Is a Post-Translational Mechanism of Kinase Inhibitor Resistance 382
Précis: Kinase inhibitors reduce proteolytic shedding of surface receptors to enhance bypass signaling–induced resistance.

IFNγ and CCL2 Cooperate to Redirect Tumor-Infiltrating Monocytes to Degrade Fibrosis and Enhance Chemotherapy Efficacy in Pancreatic Carcinoma 400
Précis: Activation of monocyte/macrophage-dependent antifibrotic activity can potentiate gemcitabine efficacy in PDAC, and tumor fibrosis is a bidirectional process that can be reversed by regulating tumor-infiltrating monocytes.
STAT5 Is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion .. 414
Précis: In the absence of STAT5, NK cells secrete elevated levels of the angiogenic factor VEGFA, enhancing angiogenesis and promoting tumor formation.
See commentary, p. 347

Targeting p300 Addiction in CBP-Deficient Cancers Causes Synthetic Lethality by Apoptotic Cell Death due to Abrogation of MYC Expression .. 430
H. Ogiwara, M. Sasaki, T. Mitachi, T. Oike, S. Higuchi, Y. Tominaga, and T. Kohno
Précis: CBP and p300 exhibit synthetic lethality, whereby the loss or inhibition of the CBP paralog p300 in CBP-deficient cancers leads to cell death via downregulation of MYC.
See commentary, p. 350

Suppression of Metastases Using a New Lymphocyte Checkpoint Target for Cancer Immunotherapy .. 446
Précis: Monoclonal antibodies against CD96 inhibit metastasis by enhancing cytotoxic NK cell activity and may be used in combination with other immunotherapeutic and chemotherapeutic agents.

Miller, Oudin, and colleagues showed that treatment with MEK inhibitors resulted in reduced levels of circulating receptor tyrosine kinases (RTK), increased tumor expression of RTKs, and decreased metalloproteinase activity. Circulating RTK levels were correlated with progression-free survival in patients with melanoma and kinase inhibitor resistance. MEK inhibitor treatment promoted the association of tissue inhibitor of metalloproteinase 1 (TIMP1) with metalloproteinases to induce the accumulation of AXL on the cell surface and subsequently drive the activation of JNK bypass signaling. These findings identify a bypass mechanism by which kinase inhibitors reduce proteolytic shedding of surface receptors and show that kinase inhibitor resistance may be overcome by neutralizing TIMP1 or the addition of a bypass RTK inhibitor. For details, please see the article by Miller, Oudin, and colleagues on page 382.
CANCER DISCOVERY

6 (4)

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/6/4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/6/4. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>