IN THE SPOTLIGHT

MENA Promotes Tumor-Intrinsic Metastasis through ECM Remodeling and Haptotaxis

Miguel Santiago-Medina1,2 and Jing Yang1,2,3

Summary: Oudin and colleagues report a novel and specific function of MENA in mediating directional migration of breast cancer cells toward a fibronectin gradient of increasing concentration. This MENA-mediated haptotactic response depends on the binding of MENA to the α5β1 integrin receptor, adhesion protein signaling, and fibronectin fibrillogenesis. Cancer Discov; 6(5): 474–6. ©2016 AACR.

See related article by Oudin et al., p. 516 (4).

CANCER DISCOVERY

VIEWS

Cancer cells use a variety of extracellular matrix (ECM) proteins to navigate in the tumor microenvironment. These directional cues are known as guidance cues and may originate from the cancer cells as well as from the supporting stromal cells. When cancer cells come into contact with these microenvironmental cues, they react by altering their morphology and migration. An increasing number of studies focus on examining chemotaxis, the process by which cancer cells integrate signals generated through soluble cues to drive cell migration, invasion, and metastasis. In addition to chemotaxis, there is a less-studied mode of migration in which cells utilize the varying concentration of the underlying ECM as a guidance cue for their directional migration. The process of substrate-bound cue-mediated cell migration is known as haptotaxis. During haptotaxis, cells are guided by gradients of surface-bound ECM proteins, much in the same way cells are guided during chemotaxis. However, it is important to note that although similar, these two forms of cell migration have their own signaling modalities (1, 2). Pioneering work carried out throughout the 1980s and 1990s by Drs. Leo Furcht and Lance Liotta demonstrated that in contrast to the other members of the ENA/VASP family, MENA contains a unique 19-amino acid inclusion not present in any of the other members of the ENA/VASP family. This unique sequence enables MENA to bind to integrin α5. Moreover, MENAINV, the alternatively spliced and cancer-associated isoform of MENA, contains a unique 19-amino acid inclusion not present in MENA or any of the other members of the ENA/VASP family. Inclusion of the INV sequence increases sensitivity to EGF as well as increases the association of MENA with integrin α5, which increases cancer cell sensitivity toward FN gradients. Because high concentrations of FN are typically found near blood vessels and in metastatic sites (8), the authors speculate that MENAINV-mediated haptotaxis toward FN may promote cancer cell metastasis. Indeed, work presented in the current study, as well as in previous studies, shows that MENAINV is significantly associated with increased tumor recurrence, metastatic mammary tumors, and decreased breast cancer patient survival. Taken together, these data support a unique role of MENAINV in promoting cancer cell chemotaxis and haptotaxis toward tumor microenvironmental cues, thus facilitating tumor invasion and metastasis.

In an effort to examine haptotaxis during metastasis, a study led by Dr. Madeleine Oudin from the laboratory of Dr. Frank Gertler analyzed how cancer cell–ECM interactions generate signals and changes in cell behavior and morphology to promote directed cell migration and invasion (4). Specifically, the authors set out to determine how fibronectin (FN), an ECM protein implicated with disease progression and mortality (5), regulates cancer cell haptotaxis and, ultimately, breast cancer metastasis. This study found that MENAINV, an isoform of the adhesion and actin-modulating protein MENA that is associated with aggressive tumors and metastasis (6), interacts with α5β1 integrin (by binding to α5 integrin) to elicit haptotaxis on FN gradients in vitro and in vivo (Fig. 1). Using preclinical tumor xenograft models and analysis of breast patient samples, the authors describe a previously unappreciated mechanism of metastasis, in which upregulation of MENA and its invasive isoform, MENAINV, endows tumor cells with the ability to migrate up FN gradients and fashion their own pathway toward the bloodstream.

A previous study from the laboratory of Dr. Gertler demonstrated that, in contrast to the other members of the ENA/VASP family, MENA contains a LERER repeat region, which enables MENA to bind to integrin α5. Moreover, MENAINV, the alternatively spliced and cancer-associated isoform of MENA, contains a unique 19-amino acid inclusion not present in MENA or any of the other members of the ENA/VASP family. Inclusion of the INV sequence increases sensitivity to EGF as well as increases the association of MENA with integrin α5, which increases cancer cell sensitivity toward FN gradients.

1Department of Pharmacology, University of California, San Diego, La Jolla, California. 2Moores Cancer Center, University of California, San Diego, La Jolla, California. 3Department of Pediatrics, University of California, San Diego, La Jolla, California.

Corresponding Authors: Jing Yang, Moores Cancer Center, University of California, San Diego, 9500 Gilman Drive, MC0636, La Jolla, CA 92093. Phone: 858-534-1998; Fax: 858-534-7390; E-mail: jyang@ucsd.edu; and Miguel Santiago-Medina, Phone: 858-534-1998; E-mail: msantiagomedina@ucsd.edu

doi: 10.1158/2159-8290.CD-16-0231

©2016 American Association for Cancer Research.
molecular mechanism regulating haptotaxis. One important aspect to be addressed is the molecular function of MENAINV at integrin α5-containing adhesions. Specifically, how does MENAINV binding to integrin α5 sensitize cells to FN gradients? The authors present data supporting the idea that MENAINV couples adhesions to the actin cytoskeleton and, in doing so, elicits actin polymerization downstream of adhesion signaling. However, it remains to be determined whether MENAINV binding to α5 promotes α5 stabilization and/or clustering or whether an FN-mediated clustering of α5 increases MENAINV at adhesions. Because α5 undergoes post-translational cleavage in the extracellular domain to dimer-or clustering or whether an FN-mediated clustering of α5 promotes α5 stabilization and/or clustering or whether an FN-mediated clustering of α5 increases MENAINV at adhesions. Because α5 undergoes post-translational cleavage in the extracellular domain to dimerize with β1 to form the FN receptor, it would be interesting to determine whether α5β1 receptor maturation requires MENA binding. Also, if integrins are stabilized and clustered as a result of MENA binding, how is MENA potentiating the phosphorylation of FAK and paxillin as well as the formation of fibrillar FN (fibrillogenesis)? Does MENA-integrin binding lead to an increase in other adhesion proteins that link the actin cytoskeleton to integrins, such as Talin for example? It would also be interesting to assess the mechanical forces MENAINV, expressing cells exert on the ECM. For example, is there an increase in the mechanical forces exerted by MENA-associated α5 integrins that, in turn, remodel FN into fibrils? Needless to say, future work should go into characterizing the role of MENA at adhesions to provide more mechanistic insight on the role of MENA at focal adhesions. An additional unexplored avenue is whether MENA causes an accumulation of FN by enhancing ECM secretion. MENAINV is known to promote invadopodia-mediated ECM degradation (7); therefore, a reduction in FN degradation seems unlikely. Is it possible that there is an increase in ECM secretion through vesicle exocytosis? Fitting with this idea, MENA, through its interaction with profilin, has been shown to mediate vesicle exocytosis (9).

Another important area in understanding haptotaxis is how the polarization of cells is regulated downstream of the MENA-α5 complex to promote directional cell migration. Is haptotaxis-mediated directional migration a CDC42-driven event? Indeed, MENA function has been implicated downstream of CDC42 in filopodia formation in fibroblasts (10). Another question is whether the presence of other ECM proteins can mask or potentiate the effect of FN to elicit haptotaxis in cancer cells. Similarly, it would be interesting to assess the role other integrins have in cancer cell haptotaxis. Lastly, because α5β1 also has a role in promoting angiogenesis, it will be important to elucidate whether α5β1 orchestrates a scheme in which both the cancer cells and blood vessels are brought together via haptotaxis, thereby enhancing metastasis. Ultimately, understanding how other cues, both soluble and substrate-bound, interact to elicit MENA-mediated haptotaxis waits to be elucidated.

This study recalls to our attention the field of haptotaxis in tumor invasion. It will be exciting to uncover additional proteins and mechanisms involved in cancer cell haptotaxis on other tumor-related ECM gradients. The ample amount of data regarding chemotaxis remains to be put into context with the emerging field of haptotaxis, and discerning the mechanisms that distinguish the two is of immediate interest. A relatively recent study on haptotaxis in melanoma cells already suggests that cancer cells use different signaling modalities specifically for haptotaxis, but not chemotaxis (2). More studies are needed to improve our understanding of how the signals generated from soluble and substrate-bound cues are integrated to promote directed cancer cell migration and metastasis. That being said, with this study, it feels as if we are moving in the right direction.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Grant Support

J. Yang is funded by NCI grants 1R01CA168689, 1R21CA191442, and 1R01CA174869, and Department of Defense grant W81XWH-13-1-0132. M. Santiago-Medina is supported by NCI grant ST32CA121938.

Published online May 2, 2016.

REFERENCES

MENA Promotes Tumor-Intrinsic Metastasis through ECM Remodeling and Haptotaxis

Miguel Santiago-Medina and Jing Yang

Updated version
Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/6/5/474

Cited articles
This article cites 10 articles, 7 of which you can access for free at:
http://cancerdiscovery.aacrjournals.org/content/6/5/474.full#ref-list-1

Citing articles
This article has been cited by 4 HighWire-hosted articles. Access the articles at:
http://cancerdiscovery.aacrjournals.org/content/6/5/474.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerdiscovery.aacrjournals.org/content/6/5/474.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.