BRAFV600E Mutations in High-Grade Colorectal Neuroendocrine Tumors May Predict Responsiveness to BRAF–MEK Combination Therapy 594

Précis: Recurrent oncogenic BRAFV600E mutations in patients with advanced colorectal NETs may be targeted with combination BRAF/MEK inhibitors to achieve rapid and sustained clinical improvement.

EGFR Fusions as Novel Therapeutic Targets in Lung Cancer 601

Précis: Oncogenic EGFR fusions were identified by next-generation sequencing in several patients with metastatic lung cancer, and these patients responded to EGFR inhibitor therapy.

BRD4 Connects Enhancer Remodeling to Senescence Immune Surveillance 612

Précis: Oncogene-induced senescence promotes enhancer remodeling and BRD4 binding at senescence-associated secretory phenotype genes, which drives paracrine signaling and immune surveillance.

See commentary, p. 574
Neutrophils Suppress Intraluminal NK Cell–Mediated Tumor Cell Clearance and Enhance Extravasation of Disseminated Carcinoma Cells 630

Précis: Neutrophils facilitate the intermediate stages of the invasion–metastasis cascade by suppressing NK-cell activity and promoting extravasation of carcinoma cells.

Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia 664

Précis: Early cytokine measurements can accurately predict which patients will develop severe cytokine release syndrome following chimeric antigen receptor T-cell therapy.

See commentary, p. 579

Spiegel and colleagues investigated the function of neutrophils in the intermediate stages of the invasion–metastasis cascade. Splenectomy to reduce the reservoir of myeloid cells suppressed pulmonary metastases in a murine mammary carcinoma model, and was associated with neutrophilia. Further, G-CSF overexpression phenocopied the neutrophilia and metastatic potential of the cancer cells, and G-CSF–induced neutrophils enhanced metastasis after intravasation but before postextravasation colonization. Neutrophils protected cancer cells from natural killer (NK) cell–mediated clearance while still within the lumina of the microvessels. Overall, these results indicate that neutrophils can suppress the activity of NK cells and promote tumor cell extravasation. For details, please see the article by Spiegel and colleagues on page 630.

Cover image courtesy of Asaf Spiegel.
CANCER DISCOVERY

6 (6)

| Updated version | Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/6/6 |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/6/6. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.