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  Figure 7.       PI3Kγ promotes macrophage PDGF-BB expression to control PDAC “ brosis. A, Masson•s Trichrome staining of tissue sections of pancreata 
from WT and p110γ Š/Š  KC and KPC animals. Scale bar, 100 μm. B, Masson•s Trichrome staining of sections of pancreata from control- and TG100-115…
treated KPC animals. C and D, images ( C ) and quanti“ cation (D) of picrosirius red staining of sections of pancreata from KPC tumors grown in WT and 
p110 γ Š/Š  animals. Scale bar, 100 μm. E, collagen I immunostaining of LMP tumors from animals treated with the PI3Kγ inhibitor TG100-115 or chemically 
similar inert control. Scale bar, 100 μm. F, Western blot and quanti“ cation of collagen I protein expression in LMP tumors from animals treated with the 
PI3Kγ inhibitor TG100-115 or chemically similar inert control. G, relative collagen I mRNA expression in normal pancreata and LMP tumors from animals 
treated with the PI3K γ inhibitor TG100-115 or chemically similar inert control. H, relative collagen I mRNA expression in primary murine “  broblasts 
incubated in the presence or absence of stimulus-free CM from IL4-stimulated WT and p110γ Š/Š  macrophages. I, relative collagen I mRNA expression in 
“ broblasts incubated in the presence or absence of stimulus-free CM from IL4-stimulated WT macrophages in the absence or presence of anti-TGFβ, 
anti…PDGF-BB, or imatinib. Signi“ cance testing was performed by parametric Student  t  test.    
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PDGF-BB. By inhibiting PI3Kγ, the expression of these genes 

is constrained, thereby activating CD8 +  T-cell–dependent 

tumor suppression and increasing survival.   

  DISCUSSION 
 Infl ammation plays a critical role in pancreatic carci-

noma progression and relapse from therapy ( 1–4 ). B cells, 

T cells, and myeloid cells can all be found in the pancreatic 

tumor microenvironment, yet these cells do not mount an 

appropriate antitumor adaptive immune response. It is now 

accepted that TAMs and myeloid-derived suppressor cells 

release immune-suppressive factors that inhibit T-cell–medi-

ated antitumor responses ( 3, 38 ), and therapeutic approaches 

that are aimed at preventing myeloid-derived suppressive 

responses show some therapeutic effi cacy in animal models 

of cancer ( 12–17 ). T-cell checkpoint inhibitors that target 

T-cell functions in cancer also hold some promise as novel 

therapeutics for pancreatic cancer ( 18–21 ). However, strate-

gies that inhibit myeloid cell–mediated immune suppression 

may well boost the effect of checkpoint inhibitors, vaccines, 

and other therapeutic strategies in the highly immunosup-

pressive microenvironment of pancreatic tumors. 

 In the studies presented here, we have identifi ed PI3Kγ as a 

critical regulator of the pathways that control immune sup-

pression, metastasis, and desmoplasia in pancreatic cancer. 

We showed that PI3Kγ is expressed in human and murine 

pancreatic tumor macrophages and that selective deletion of 

this PI3K isoform suppresses orthotopic and spontaneous 

PDAC growth and metastasis. In addition, PI3Kγ inhibition 

signifi cantly enhanced survival of mice bearing spontaneous 

PDACs by suppressing tumor growth and metastasis. Our 

studies demonstrate that PI3Kγ plays a key role in activat-

ing the immune-suppressive transcriptional signature of 

tumor-derived macrophages, in that PI3Kγ inhibition sup-

pressed expression of  Arg1 ,  Tgfb , and  Il10  and stimulated 

expression of  Il12  and  Ifng in vivo . These changes in myeloid 

gene expression signatures were associated with increased 

CD8 +  T-cell recruitment to PDAC tumors, increased T-cell 

expression of IFNγ, decreased expression of TGFβ and IL10, 

and CD8 +  T-cell–dependent tumor suppression. Our results 

are in agreement with recent studies that showed that PI3Kδ 

but not PI3Kγ is required for T-cell activation, but contrast 

with studies that showed that p110γ is required for T-cell 

recruitment by infl ammatory chemokines ( 46–49 ). It is pos-

sible that T-cell recruitment to tumors  in vivo  depends on 

chemokines that activate only p110δ rather than p110γ. 

Finally, we show that PI3Kγ also regulates macrophage 

expression of PDGF-BB, which stimulates tumor cell chemo-

taxis and fi broblast production of collagen  in vitro  and  in 

vivo . Recent studies revealed that p53 mutations induce con-

stitutive PDGFR expression and signaling that drives tumor 

invasion and metastasis ( 50 ). Our studies suggest that mac-

rophage-derived PDGF-BB may cooperate with this mutant 

pathway to promote metastasis but also show that targeting 

PI3Kγ can control this pathway by which PDACs spread. 

Our studies thus demonstrate that inhibitors of PI3Kγ offer 

promise as new therapeutic approaches to control tumor 

growth and progression, metastasis, and desmoplasia in this 

devastating malignancy. 

 In related studies, we demonstrated that human and 

murine PDACs exhibit increased PI3Kγ-dependent BTK acti-

vation in CD11b +  FcγRI/III +  myeloid cells ( 51 ). BTK or PI3Kγ 

inhibition as monotherapy in early-stage PDAC, or in combi-

nation with gemcitabine in late-stage PDAC, slowed progres-

sion of orthotopic tumors in a manner dependent on T cells 

( 51 ). However, we observed that BTK was not activated in 

p110γ −/−  macrophages and that the combination of BTK and 

PI3Kγ inhibitors had no additive effects in regulating mac-

rophage gene expression or PDAC progression. These studies 

indicated that the two kinases regulate overlapping signal 

transduction pathways in macrophages. An increase in effec-

tor and memory CD8 +  T-cell phenotypes was also observed 

in these studies, which is consistent with other reports about 

CD8 +  T-cell responses to various immunotherapies ( 17 ). 

 We demonstrated that genetic and pharmacologic PI3Kγ 

inhibition was as effective as treatment with the checkpoint 

inhibitor anti–PD-1 in mouse models of PDAC. Although we 

were unable to observe additive effects of targeting PI3Kγ and 

PD-1 on tumor growth at this time, we did observe improved 

survival by combining PI3Kγ inhibitors and chemotherapeu-

tic agents. Our studies show that targeted inhibition of PI3Kγ 

can combine with other therapeutic approaches targeting dis-

tinct components of the tumor microenvironment to effect 

long-term durable anti-PDAC tumor immune responses.  

  METHODS 
  Institutional Approvals 

 All studies with human tissues were approved by the Institutional 

Review Board for human subjects research of the University of Cali-

fornia, San Diego (UCSD). Informed consent was obtained from all 

patients prior to surgery. The use of samples occurred under “exempt 

category 4” for research on deidentifi ed biological specimens. All 

animal experiments were performed with approval from the Institu-

tional Animal Care and Use Committees of the University of Califor-

nia, San Diego, and the University of Torino, Italy.  

  Reagents 
 TG100-115 was from Targegen, Inc. Fovista was from Ophthotech.  

  Cell Lines 
 The p53 2.1.1 pancreatic adenocarcinoma cell line was derived from 

primary PDAC tumors (Fvb/N) of male transgenic KC mice harbor-

ing null mutations in  Trp53 . The LMP pancreatic adenocarcinoma 

cell line was derived from a liver metastasis of a primary PDAC tumor 

from transgenic KPC mice in a C57BL6;129Sv background. The K8484 

pancreatic adenocarcinoma cell line was derived from a primary PDAC 

tumor from transgenic KPC mice in a C57BL6 background. The Panc02 

cell line from C57BL6 mice has been previously described ( 33 ). All 

cell lines were tested for  Mycoplasma  contamination and grown in 

DMEM/10% FBS/1.0% Penicillin-Streptomycin (Pen-Strep) on plastic 

plates (LMP, Panc02, K8484) or plastic plates coated with 50 μg/mL rat 

tail collagen I (p53 2.1.1; BD Biosciences). Cells used in these studies 

were authenticated by morphologic profi ling and RNA sequencing and 

RT-PCR in 2012, whole-exome analysis in 2015 (p53 2.1.1), and PI3Kγ 

inhibitor sensitivity analyses in 2013–2015. Panc02 cells and LMP were 

acquired in 2009; K8484 cells and p53 2.1.1 cells were acquired in 2014.  

  Animals 
 Generation and characterization of p110γ −/− , KC, and KPC mice 

have been described previously ( 23, 24, 28, 29 ).  KPC  animals in the 
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C57BL6 background were crossed with  Pik3cg  −/−  animals in the 

C57BL6 background to generate  Pik3cg  −/− ;  KC  and  Pik3cg  −/− ;  KPC  

mice in the Animal Facility at the Molecular Biotechnology Center, 

University of Turin.  

  Tumor Studies 
 Ten thousand p53 2.1.1 PDAC cells were orthotopically implanted 

into the pancreata of p110γ +/+  (WT) or p110γ −/−  8-to-10-week-old 

FVB/n mice. Five hundred thousand LMP PDAC cells were orthotopi-

cally implanted into the pancreata of 8-to-10-week-old C57BL6;129 

mice, and fi ve hundred thousand K8484 or Panc02 PDAC cells 

were orthotopically implanted into the pancreata of 8-to-10-week-old 

C57BL6 mice ( n  = 10). In some studies, WT and p110γ −/−  animals with 

tumors were treated by i.p injection with and without gemcitabine 

(150 mg/kg) on day 7 and day 14 ( n  = 10). In other studies, mice 

were treated by i.p injection b.i.d. with 2.5 mg/kg of PI3Kγ inhibitor 

(TG100-115) or with a chemically similar inert control twice daily 

from days 7 to 21 ( n  = 10). In some studies, WT and p110γ −/−  mice were 

treated with 100 μg anti–PD-1 or isotype control clone LTF-2 (BioX-

Cell) administered by i.p. injection on days 7, 10, and 13 of tumor 

growth. Mice were sacrifi ced on day 21. For all tumor experiments, 

tumor volumes and weights were recorded at sacrifi ce. In other stud-

ies, the growth, metastasis, and survival of spontaneous PDAC tumors 

in p110γ +/+  and p110γ −/−  LSL-Kras  G12D/+ ;  Pdx-1Cre , and  LSL-Kras  G12D/+ ; 

 LSL-Trp53  R172H/+  Pdx-1Cre  animals were evaluated over 100+ weeks.  

  RNA Sequencing 
 Freshly isolated mouse bone marrow cells from 9 WT and 9 

p110γ −/−  mice were pooled into 3 replicate sets of WT or p110γ −/−  cells 

that were differentiated into macrophages for 6 days in RPMI + 20% FBS 

+ 1% Pen-Strep  + 50 ng/mL macrophage colony-stimulating factor 

(M-CSF) . Each replicate set of macrophages was then incubated for 

48 hours with M-CSF or M-CSF + IL4. Macrophages were removed 

from dishes, and RNA was harvested using a Qiagen Allprep Kit. 

One microgram of total RNA per sample was used for the construc-

tion of sequencing libraries. RNA sequencing was performed by the 

University of California, San Diego, Institute for Genomic Medicine 

Genomics Center as follows: RNA libraries were prepared for sequenc-

ing using standard Illumina protocols. mRNA profi les of M-CSF– and 

IL4-stimulated macrophage derived from WT and PI3K gamma null 

(p110γ −/− ) mice were generated by single read deep sequencing, in trip-

licate, using Illumina HiSeq2000. Sequence analysis was performed 

as previously described, and results are available to view online at the 

NCBI Gene Express Omnibus website (fi le number GSE58318).  

  Statistical Analysis  
 For studies evaluating the effect of drugs on tumor growth, a sam-

ple size of at least 10 mice/group provided 80% power to detect mean 

difference of 2.25 SD between two groups (based on a two-sample  t  

test with 2-sided 5% signifi cance level). Prior to statistical analyses, 

data were examined for quality and possible outliers. Data were nor-

malized to the standard where applicable. Signifi cance testing was 

performed by one-way Anova with Tukey  post-hoc  testing for multiple 

pairwise testing or by parametric or nonparametric Student  t  test as 

appropriate. The Fisher exact test was used to query signifi cant dif-

ferences in rates of metastasis between groups.  

  Supplementary Methods  
 Additional detailed methods are available online in the Supple-

mentary Materials.   
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