Cells from the brain, heart, and kidney were refractory. The tissues from the intestines, lungs, and liver were unprimed, and tissues found that hematopoietic cells were primed, cells “apoptosis refractory” if insufficient expression of apoptotic proteins render them less sensitive to apoptosis, and mitochondria permeabilize readily, “unprimed” if antiapoptotic and cells can be classified as “primed” for apoptosis if the (BAX or BAK). Thus, by titrating BH3 peptides, mitochondria mitochondrial apoptosis by activating proapoptotic proteins formed BH3 profiling to determine the propensity of various cell types to undergo apoptosis. BH3-only proteins trigger mitochondrial apoptosis by activating proapoptotic proteins (BAX or BAK). Thus, by titrating BH3 peptides, mitochondria and cells can be classified as “primed” for apoptosis if the mitochondria permeabilize readily, “unprimed” if antiapoptotic proteins render them less sensitive to apoptosis, and “apoptosis refractory” if insufficient expression of apoptotic machinery prevents apoptosis. BH3 profiling of adult mouse tissues found that hematopoietic cells were primed, cells from the intestines, lungs, and liver were unprimed, and cells from the brain, heart, and kidney were refractory. The refractory tissues were lacking both pro- and antiapoptotic proteins including BAX and BAK. In contrast, brain, heart, and kidney cells in embryonic and young mice were primed for apoptosis, and radiation and chemotherapy induced extensive apoptosis. Growth-associated MYC signaling promoted high expression levels of BAX and BAX in young mice, likely explaining their susceptibility to apoptosis, whereas BAX and BAK were downregulated in adulthood. The higher apoptotic priming in young mice contributed to cardiotoxicity in response to chemotherapy and neurotoxicity in response to radiation, which could be prevented by loss of BAX and BAK. Consistent with these findings, brain tissue from young patients was most sensitive to BH3 peptides, and BAX expression was highest prenatally and decreased throughout development. The finding that tissue from young patients and mice is primed for apoptosis may explain the increased risk of certain treatment-associated toxicities in pediatric cancer patients.


Chromosomal translocations involving the mixed-lineage leukemia (MLL) gene, which encodes an enzyme that catalyzes the methylation of histone H3 lysine 4, are associated with a poor prognosis in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), and more effective targeted therapies are needed. Liang and colleagues found that, despite similar mRNA expression, the wild-type MLL protein was more abundant than the chimeric MLL fusion protein in leukemia cells, suggesting the possibility that stabilizing wild-type MLL might displace chimeric MLL fusion proteins from chromatin. The E2/E3 ubiquitin ligase UBE2O was found to interact with the C-terminus of MLL, which is lacking in the MLL chimeras, thereby promoting degradation of wild-type MLL, but not the chimeric fusion proteins. Mechanistically, IL1 signaling promoted phosphorylation of UBE2O by the IRAK4 kinase, which enhanced the MLL–UBE2O interaction and promoted degradation of wild-type MLL. Thus, IRAK inhibition reduced the MLL–UBE2O interaction and increased MLL stability and occupancy at target genes, and reduced occupancy of chimeric MLL at a subset of target genes including super elongation complex genes. Further, an IRAK4 inhibitor reduced the proliferation and viability of patient-derived leukemia cell lines harboring MLL fusions, but not of cells without MLL rearrangements or of an MLL-rearranged cell line in which the wild-type MLL allele was also deleted, indicating that the wild-type MLL allele is required for enhanced sensitivity of MLL-rearranged cells to IRAK inhibition. Moreover, IRAK inhibition improved survival and slowed disease progression in a mouse model of MLL-AF9 leukemia, highlighting IRAK as a potential therapeutic target in MLL-rearranged leukemia. Altogether, these results suggest that stabilizing wild-type MLL may have therapeutic potential in patients with MLL-rearranged leukemia, and these findings may extend to tumors driven by other fusion proteins.

The use of chemotherapy and radiation is limited to the induction of apoptosis in healthy tissues, which is especially pronounced in very young pediatric cancer patients who experience higher levels of certain treatment-related toxicities than adults. However, it is unclear why children experience a greater risk of developing these toxicities, and although apoptosis has been extensively studied in cancer and hematopoietic tissues, less is known about apoptosis in healthy somatic tissues. Sarosiek and colleagues performed BH3 profiling to determine the propensity of various cell types to undergo apoptosis. BH3-only proteins trigger mitochondrial apoptosis by activating proapoptotic proteins (BAX or BAK). Thus, by titrating BH3 peptides, mitochondria and cells can be classified as “primed” for apoptosis if the mitochondria permeabilize readily, “unprimed” if antiapoptotic proteins render them less sensitive to apoptosis, and “apoptosis refractory” if insufficient expression of apoptotic machinery prevents apoptosis. BH3 profiling of adult mouse tissues found that hematopoietic cells were primed, cells from the intestines, lungs, and liver were unprimed, and cells from the brain, heart, and kidney were refractory. The refractory tissues were lacking both pro- and antiapoptotic proteins including BAX and BAK. In contrast, brain, heart, and kidney cells in embryonic and young mice were primed for apoptosis, and irradiation induced extensive apoptosis. Growth-associated MYC signaling promoted high expression levels of BAX and BAX in young mice, likely explaining their susceptibility to apoptosis, whereas BAX and BAK were downregulated in adulthood. The higher apoptotic priming in young mice contributed to cardiotoxicity in response to chemotherapy and neurotoxicity in response to radiation, which could be prevented by loss of BAX and BAK. Consistent with these findings, brain tissue from young patients was most sensitive to BH3 peptides, and BAX expression was highest prenatally and decreased throughout development. The finding that tissue from young patients and mice is primed for apoptosis may explain the increased risk of certain treatment-associated toxicities in pediatric cancer patients.

Stabilization of Wild-Type MLL Displaces Oncogenic MLL Fusion Proteins


Access the most recent version of this article at: doi:10.1158/2159-8290.CD-RW2017-008

Sign up to receive free email-alerts related to this article or journal.

To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/7/2/126.1. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.