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  Figure 5.       Analysis of  JAK1  and  JAK2  mutations in the CCLE database.  A,  Variant allele frequency (left axis, red and blue points) and percentage of 
tumors with mutations in  JAK1  or  JAK2  (right axis, gray bars) in the CCLE database from the cBioPortal.  B,  Nonsynonymous mutational burden was ana-
lyzed for individual cell lines (each dot represents cell line) and plotted for each histologic type.  JAK1  or  JAK2  mutated cell lines were color coded (red, 
VAF>0.75; blue, VAF<0.75).   
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  Figure 6.       Frequency of  JAK1  and  JAK2  alterations and their association with overall survival in TCGA datasets. Kaplan–Meier survival analysis of 
TCGA skin cutaneous melanoma ( A ), breast invasive carcinoma ( B ), and prostate adenocarcinoma ( C ) provisional datasets, comparing control patients 
(blue) and patients harboring specifi ed alterations in  JAK1  and  JAK2  (red). Frequency and distribution of combined  JAK1  and  JAK2  alterations are shown 
within each set of Kaplan–Meier plots. Signifi cance testing of overall survival was performed using log-rank analysis.    
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of interferon gamma signaling, a T-cell response with inter-

feron gamma production would not lead to reactive PD-L1 

expression and therefore these would be cases that would be 

considered constitutively PD-L1 negative. 

 JAK kinases mediate signaling from many cytokine recep-

tors, but the commonality between  JAK1  and  JAK2  homozy-

gous loss-of-function mutations is that they are both required 

for signaling upon exposure to interferon gamma ( 27 ). Inter-

feron gamma is a major cytokine produced by T cells upon 

recognizing their cognate antigen, and it has multiple effects 

on target cells. In the setting of acquired resistance to PD-1 

blockade therapy in patients who progressed while on continu-

ous anti–PD-1 therapy, the tumor’s insensitivity to interferon 

gamma provides a selective advantage for the relapsed cancer to 

grow, as it no longer is sensitive to the antiproliferative effects 

of interferon gamma ( 14 ). In that setting, T cells continued to 

recognize cancer cells with  JAK1  or  JAK2  mutations despite the 

known role of interferon gamma signaling in upregulating a 

series of genes involved in the antigen-presenting machinery. 

However, as the baseline expression of MHC class I, protea-

some subunits and TAP transporters is unchanged, tumor 

antigen presentation to T cells was not impaired ( 14 ). 

 In primary resistance to checkpoint blockade therapy with 

the anti–CTLA-4 antibody ipilimumab, there is a higher fre-

quency of mutations in the several molecules involved in the 

interferon signaling pathway ( 18 ). It is hypothesized that 

cancer cells lacking interferon receptor signaling would have 

a selective advantage because they evade T cells activated by 

CTLA-4 blockade, in particular through decreased antigen 

presentation and resistance to the antiproliferative effects of 

interferons. The same processes may have an important role in 

the lack of response to anti–PD-1 therapy in the cancers with 

 JAK1/2  loss-of-function mutations in our series, as antitumor 

T cells would be anticipated to have lower ability to recognize 

and kill cancer cells. Loss-of-function mutations in  JAK1/2  

would likewise prevent the antitumor activity of any immuno-

therapy that results in the activation of T cells to attack cancer 

cells. But in the setting of anti–PD-1/PD-L1 therapy, it has the 
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additional important effect of preventing PD-L1 expression 

upon interferon gamma exposure, thereby making it futile to 

pharmacologically inhibit the PD-L1/PD-1 interaction. 

 As the interferon gamma receptor pathway downstream of 

JAK1/2 controls the expression of chemokines with a potent 

chemoattractant effect on T cells, such as CXCL9, CXCL10, 

and CXCL11 ( 28 ), it is possible that an important effect of 

 JAK1/2  loss may result in a lack of T-cell infi ltrates. Indeed, 

both the patient in the melanoma series with a  JAK1  loss of 

function and the biopsy from which we had derived a mela-

noma cell line with a  JAK1  mutation were completely devoid of 

T-cell infi ltrates. As preexisting T cells in the tumor are a requi-

site for response to anti–PD-1 therapy ( 11 ), a  JAK1/2  mutation 

may result in lack of response not only because PD-L1 cannot 

be reactively expressed but also because the cancer fails to 

attract T cells due to lack of chemokine production. 

 Beyond a genetic mutation that prevented expression of 

 JAK1/2 , it is also possible that epigenetic silencing of  JAK s 

could result in lack of response to interferon gamma, as previ-

ously reported for the LNCaP cell line ( 29 ). In this case, loss 

of JAK1/2 expression could then be corrected with exposure 

to a demethylating agent. This evidence suggests that the fre-

quency of loss of function in  JAK1/2  may be higher than can 

be estimated by exome-sequencing analyses, as it could occur 

epigenetically, and in these cases it would provide an option 

for pharmacologic intervention. 

 In conclusion, we propose that  JAK1/2  mutations that lead 

to loss of interferon gamma signaling and prevent adaptive 

PD-L1 expression upon interferon gamma exposure represent 

an immunoediting process that defi nes patients with cancer 

who would not be good candidates for PD-1 blockade therapy. 

This mechanism would add to other multiple explanations 

that may lead to primary resistance to PD-1 blockade therapy, 

including a tumor that lacks antigens that can be a target for 

a T-cell response, the presence of immune suppressive factors 

in the tumor microenvironment that exclude T cells in tumors 

or that lead to alteration of T-cell function, presence of immune 

suppressive cells such as T regulatory or myeloid-derived sup-

pressor cells, or cancers that have specifi c genetic signaling 

or transcriptomes that are not permissive to T-cell infi ltrates 

( 20, 30, 31 ). The recognition that  JAK1/2  loss-of-function 

mutations would lead to lack of response to PD-1 blockade 

therapy could be incorporated in oncogenic sequencing panels 

used to select patients for precision cancer treatments.  

  METHODS 
  Tumor Samples 

 Tumor biopsies were obtained from a subset of patients enrolled in 

a phase I expansion clinical trial with pembrolizumab after signing a 

written informed consent ( 32 ). Patients were selected for this analy-

sis by having adequate tumor biopsy samples and clinical follow-up. 

Baseline biopsies of metastatic tumors were obtained within 30 days 

of starting on treatment, except for one in a patient with an eventual 

complete response ( Fig. 3B , subject #4) collected after 84 days on 

treatment. Samples were immediately fi xed in formalin followed by 

paraffi n embedding, and when there was an additional sterile piece 

of the tumor, processed for snap-freezing in liquid nitrogen and to 

establish a cell line as previously described ( 33–35 ). Tumor biopsy 

and peripheral blood cell collection and analyses were approved by 

UCLA Institutional Review Boards 11-001918 and 11-003066.  

  Treatment and Response Assessment 
 Patients received single-agent pembrolizumab intravenously in one 

of three dosing regimens: 2 mg/kg every 3 weeks (2Q3W), 10 mg/kg 

every 3 weeks (10Q3W), or 10 mg/kg every 2 weeks (10Q2W; ref.  32 ). 

Tumor responses to pembrolizumab were evaluated at 12 weeks after 

the fi rst infusion (confi rmed at 16 weeks), and every 12 weeks there-

after. The RECIST version 1.1 was used to defi ne objective clinical res-

ponses. The protocol was allowed to proceed beyond initial progression 

at the restaging scans at 12 weeks and have repeated imaging scans 4 

weeks later following the immune-related response criteria (irRC; ref.  36 ).  

  IHC Staining 
 For CD8 T-cell density, 5 of the 11 cases were reanalyzed blindly 

from IHC samples already used in our prior work ( 11 ), and the other 

6 cases were newly stained cases also analyzed blindly. Slides were 

stained with hematoxylin and eosin, S100, CD8, CD68, PD-1, and 

PD-L1 at the UCLA Anatomic Pathology IHC Laboratory. Immu-

nostaining was performed on Leica Bond III autostainers using Leica 

Bond ancillary reagents and the REFINE polymer DAB detection 

system as previously described ( 11 ). Cell density (cells/mm 2 ) in the 

invasive margin or intratumoral area was calculated using the Indica 

Labs Halo platform as previously described ( 11 ).  

  Cell Lines, Cell Culture, and Conditions 
 Patient-derived melanoma cell lines were generated as reported 

previously and characterized for their oncogenic mutational status 

( 33–35 ). Each melanoma cell line was thawed and maintained in 

RPMI-1640 medium supplemented with 10% FBS, 100 units/mL 

penicillin, and 100 μg/mL streptomycin at 37°C in a humidifi ed 

atmosphere of 5% CO 2 . Cells were subject to experimental con-

ditions after reaching two passages from thawing. Cell lines were 

periodically authenticated using GenePrint 10 System (Promega) 

and were matched with the earliest passage cell lines. Selected mela-

noma cell lines were subjected to  Mycoplasma  tests periodically (every 

2–3 months) with the MycoAlert Mycoplasma Detection Kit (Lonza).  

  Surface Flow Cytometry Analysis for PD-L1 and MHC Class I 
 Melanoma cells were seeded into 6-well plates on day 1, ranging 

from 420,000 to 485,000 depending on their doubling time, target-

ing 70% to 80% of confl uence at the time of trypsinization after 18 

hours of exposure to interferons. For 48-hour exposure, 225,000 to 

280,000 cells were seeded, and 185,000 to 200,000 cells were seeded 

for 72-hour exposure. After trypsinization, cells were incubated at 

37°C for 2 hours with media containing different concentrations of 

interferons. Concentrations of each interferon were determined after 

optimization process (dose–response curves were generated with 

representative cell lines as shown in Supplementary Fig. S5B–S5D). 

After 2 hours of incubation, the media were removed by centrifuga-

tion and cells were resuspended with 100% FBS and stained with APC 

anti–PD-L1 antibody on ice for 20 minutes. The staining was halted 

by washing with 3 mL of PBS, which was removed by centrifugation 

at 500 ×  g  for 4 minutes. The cells were resuspended with 300 μL of 

PBS, and 7-AAD for dead cell discrimination was added to samples 

prior to data acquisition by LSRII. The data were analyzed by FlowJo 

software (Version 10.0.8r1, Tree Star Inc.). Experiments were per-

formed at least twice for each cell line; some cell lines with high assay 

variability were analyzed three times.  

  Phosphofl ow Signaling Analyses 
 Cells were seeded into two 6-well plates for each cell line for single 

phospho-proteomics study. After 30-minute or 18-hour exposure to 

interferon alpha, beta, or gamma, cells were trypsinized and resus-

pended with 1 mL of PBS per 1 to 3 million cells and stained with 

live/dead agent at room temperature in the dark for 30 minutes. 
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Cells were then fi xed with paraformaldehyde at room temperature for 

10 minutes in the dark, permeabilized by methanol, and stained with 

pSTAT1. Cells were incubated at room temperature in the dark for 

30 minutes, washed with phospho-fl ow cytometry buffer, and resus-

pended with 300 to 500 μL of the same buffer and analyzed with an 

LSRII. The fl ow cytometry standard (FCS) fi les obtained by LSRII were 

analyzed using the online fl ow cytometry program (Cytobank; ref.  37 ). 

The raw FCS fi les were deconvoluted into four different conditions, 

three of which were exposed to interferon alpha, beta, and gamma and 

compared with an untreated condition at each time point. Data repre-

sented as Arcsinh ratio, which is one of transformed ratio of cytometry 

data (inverse hyperbolic sine) analyses; each data point was compared 

with its control [Value = arcsinh((x − control)/scale_argument)].  

  Western Blot Analyses 
 Selected melanoma cells were maintained in 10-cm cell culture 

dishes and exposed to interferon alpha, beta, or gamma (same con-

centrations as above) for 30 minutes or 18 hours. Western blotting 

was performed as described previously ( 38 ). Primary antibodies 

included pJAK1 (Tyr1022/1023), pJAK2 (Tyr221), pSTAT1 (Tyr701), 

pSTAT3 (Tyr705), pSTAT5 (Tyr695), and their total proteins; PIAS1, 

IRF1, SOCS1, and GAPDH (all from Cell Signaling Technology). 

Antibodies were diluted to 1:1,000 ratio for each blot. Immunore-

activity was revealed with an ECL-Plus Kit (Amersham Biosciences 

Co.), using the ChemiDoc MP system (Bio-rad Laboratories).  

  Lentiviral Vector Production and Gene Transfer 
 Lentivirus production was performed by transient cotransfection of 

293T cells (ATCC). The lentiviral vectors pLenti-C-mGFP and pLenti-

C-JAK1-mGFP were purchased from Origen (cat# RC213878L2). In 

brief, T175 tissue culture fl asks coated with poly- L -lysine (Sigma 

Aldrich) containing 6 × 10 6  293T cells were used for each transfec-

tion. The constructs required for the packaging of third-generation 

self-inactivating lentiviral vectors pLenti-C-mGFP and pLenti-C-

JAK1-mGFP (60 μg), pMDLGg/p (39 μg), pRSV–REV (15 μg), and 

pMD.G (21 μg) were dissolved in water in a total volume of 2.7 mL. A 

total of 300 μL of 2.5 mol/L CaCl 2  (Sigma Aldrich) was added to the 

DNA mixture. A total of 2.8 mL of the DNA/CaCl 2  mix was added 

dropwise to 2.8 mL of 2× HBS buffer, pH 7.12 (280 nmol/L NaCl, 1.5 

mmol/L Na 2 HPO 4 , 100 mmol/L HEPES). The DNA/CaPO 4  suspen-

sion was added to each fl ask and incubated in a 5% CO 2  incubator 

at 37°C overnight. The next morning, the medium was discarded, 

the cells were washed, and 15 mL DMEM with 10% FBS containing 

20 mmol/L HEPES (Invitrogen) and 10 mmol/L sodium butyrate 

(Sigma Aldrich) was added, and the fl ask was incubated at 37°C for 8 

to 12 hours. After that, the cells were washed once, and 10 mL fresh 

DMEM medium with 20 mmol/L HEPES was added onto the 293T 

cells, which were further incubated in a 5% CO 2  incubator at 37°C 

for 12 hours. The medium supernatants were then collected, fi ltered 

through 0.2 μmol/L fi lters, and cryopreserved at minus 80°C. Virus 

supernatant was added at different concentrations into 6-well plates 

containing 5 × 10 5  cells per well. Protamine sulphate (Sigma Aldrich) 

was added at a fi nal concentration of 5 μg/mL, and the transduction 

plates were incubated at 37°C in 5% CO 2  overnight.  

  Whole-Exome Sequencing 
 Exon capture and library preparation were performed at the UCLA 

Clinical Microarray Core using the Roche Nimblegen SeqCap EZ 

Human Exome Library v3.0 targeting 65 Mb of genome. Paired-end 

sequencing (2 × 100 bp) was carried out on the HiSeq 2000 platform 

(Illumina) and sequences were aligned to the UCSC hg19 reference 

using BWA-mem (v0.7.9). Sequencing for tumors was performed to 

a target depth of 150× (actual min. 91×, max. 162×, mean 130×). 

Preprocessing followed the Genome Analysis Toolkit (GATK) Best 

Practices Workfl ow v3, including duplicate removal (PicardTools), 

indel realignment, and base quality score recalibration. 

 Somatic mutations were called by comparison to sequencing of 

matched normals for the PD1-treated whole-tumor patient samples. 

Methods were modifi ed from ref.  39 ; specifi cally, the substitution the 

GATK-HaplotypeCaller (HC, v3.3) for the Unifi edGenotyper. gVCF 

outputs from GATK-HC for all 23 tumor/normal exomes, and cell lines 

M395 and M431, were jointly genotyped and submitted for variant 

quality score recalibration. Somatic variants were determined using 

one-sided Fisher exact test ( P  value cutoff ≤ 0.01) between tumor/nor-

mal pairs with depth >10 reads. Only high-confi dence mutations were 

retained for fi nal consideration, defi ned as those identifi ed by at least 

two out of three programs [MuTect (v1.1.7; ref.  40 ), Varscan2 Somatic 

(v2.3.6; ref.  41 ), and the GATK-HC] for single nucleotide variants, 

and those called by both Varscan2 and the GATK-HC for insertions/

deletions. Variants were annotated by Oncotator ( 42 ), with nonsynony-

mous mutations for mutational load being those classifi ed as nonsense, 

missense, splice_site, or nonstop mutations, as well as frame_shift, 

in_frame_, or start_codon altering insertions/deletions. Adjusted vari-

ant allele frequency was calculated according to the following equation:      

 VAF adjusted = nmut/CNt = VAF∗[1+(2∗Stromal Fraction)/(Tumor 

Fraction*Local Copy Number)] 

 This is an algebraic rearrangement of the equation used in the clonal 

architecture analysis from McGranaham and colleagues ( 43 ) to calculate 

the fraction of mutated chromosomal copies while adjusting for the 

diluting contribution of stromal chromosomal copies. Local tumor copy 

number (CN t ,) tumor fraction (purity, or p) and stromal fraction (1 – p) 

were produced by Sequenza ( 44 ), which uses both depth ratio and SNP 

minor B-allele frequencies to estimate tumor ploidy and percent tumor 

content, and perform allele-specifi c copy-number variation analysis. 

 PDJ amplifi cation was considered tumor/normal depth ratio ≥ 2 stan-

dard deviations above length-weighted genome average. BAM fi les for 

the 16 colorectal cases were previously mapped to hg18, and sequencing 

and analysis were performed at Personal Genome Diagnostics. After pre-

processing and somatic variant calling, positions were remapped to hg19 

using the Ensembl Assembly Converter before annotation. 

 M431 and M395 were compared with matched normal samples, 

the other 47 cell lines lacked a paired normal sample. For detection 

of potential  JAK1  or  JAK2  mutations, variants were detected using 

the Haplotype Caller, noted for membership in dbSNP 146 and allele 

frequency from the 1000 Genomes project, and confi rmed by visual 

inspection with the Integrated Genomics Viewer.  

  RT-PCR 
 Forward 5′-AACCTTCTCACCAGGATGCG-3′ and reverse 

5′-CTCAGCACGTACATCCCCTC-3′ primers were designed to per-

form RT-PCR (700 base pair of target PCR product to cover the P429 

region of the JAK1 protein) on the M431 cell line. Total RNA was 

extracted by the  mir Vana miRNA Isolation Kit, with phenols as per 

the manufacturer’s protocol (Thermo Fischer Scientifi c). RT-PCR 

was performed by utilizing ThermoScript RT-PCR Systems (Thermo 

Fisher Scientifi c, cat# 11146-057). PCR product was subject to Sanger 

sequencing at the UCLA core facility.  

  TCGA Analysis 
 To determine the relevance of  JAK1  and  JAK2  alterations in a 

broader set of patients, we queried the TCGA skin cutaneous mela-

noma provisional dataset for the frequency of genetic and expression 

alterations in  JAK1  and  JAK2 . We then extended our query to the 

breast invasive carcinoma, prostate adenocarcinoma, lung adenocar-

cinoma, and colorectal adenocarcinoma provisional TCGA datasets. 

We then examined the association of various  JAK1  and  JAK2  altera-

tions with overall survival for each dataset. The results are based upon 

data generated by the TCGA Research Network and made available 

through the NCI Genomic Data Commons and cBioPortal ( 45, 46 ). 

 The mutation annotation format (MAF) fi les containing  JAK1  

and  JAK2  mutations in the TCGA datasets were obtained from the 
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Genomic Data Commons. In addition, mutations, putative copy-

number alterations, mRNA expression, protein expression, and sur-

vival data were obtained using the cBioPortal resource. The putative 

copy-number alterations (homodeletion events, in particular) avail-

able in cBioPortal were obtained from the TCGA datasets using 

Genomic Identifi cation of Signifi cant Targets in Cancer (GISTIC; 

ref.  47 ). The mRNA expression data available in cBioPortal were 

obtained from the TCGA datasets using RNA-seq (RNA Seq V2 

RSEM). Upregulation and downregulation of  JAK1  and  JAK2  mRNA 

expression were determined using an mRNA  z -score cutoff of 2.0. 

Protein expression data available in cBioPortal were obtained from 

the TCGA dataset using RPPA, with a  z -score threshold of 2.0. 

 Mutation data between the MAF fi les and data from cBioPortal were 

combined. Genetic and expression alterations were characterized in 

one of six categories: amplifi cations, homodeletions, single-nucleotide 

polymorphisms, truncating mutations (stop codons and frameshift 

insertions and deletions), mRNA or protein downregulation, and 

mRNA or protein upregulation. The frequency of  JAK1  and  JAK2  alter-

ations was determined using combined data from the *.MAF fi le and 

cBioPortal. Kaplan–Meier survival curves were generated in R, using 

the “survminer” package and the “ggsurvplot” function. Overall sur-

vival was determined using log-rank analysis.  

  Statistical Analysis 
 Statistical comparisons were performed by the unpaired two-tailed 

Student  t  test (GraphPad Prism, version 6.0 for Windows). Muta-

tional load was compared by unpaired two-sided Mann–Whitney 

test. R programming was utilized to generate arrow graphs of PD-L1/

MHC class I expression upon interferon exposures and the CCLE 

 JAK1/2  mutation frequency graph.   
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