EWING SARCOMA GENE FUSIONS CAN BE GENERATED VIA CHROMOPLEXY

Structural rearrangements that result in gene fusions occur commonly in cancer and can drive tumorigenesis. Sarcomas are often defined by characteristic gene fusions, such as the EWSR1–ETS fusions in Ewing sarcoma (where EWSR1 is fused to one of the ETS transcription factors, FLI1, ERG or ETV1). The downstream effects of EWS–FLI1 and other sarcoma fusion proteins have been widely studied, but the timing and mechanism by which they occur have not been determined. Anderson and colleagues investigated the genesis of EWSR1–ETS fusions through whole-exome or whole-genome sequencing data from 124 patients with Ewing sarcoma. As has been previously reported, the tumors were genetically quiet with few somatic mutations. However, analysis of structural rearrangements revealed that in 52 of 124 (42%) tumors, the EWSR1–ETS fusion arose by chromoplexy, a sudden burst of complex, loop-like rearrangements, in contrast to more the common mechanism of fusion gene generation by simple reciprocal translocation. Chromoplexy-generated fusions were enriched in patients with aggressive disease and poor outcomes. Chromoplexy-mediated generation of EWSR1–ETS fusions occurred preferentially in bursts in early replicating DNA and in transcriptionally active regions. The EWSR1–ETS fusion was always at the center of the loops but multiple other genes were simultaneously disrupted. Analysis of matched relapsed or metastatic tumors revealed that primary and relapsed tumors diverged after the generation of EWSR1–ETS in the ancestral clone, with primary and relapsed tumors evolving independently. Further, recurrent chromoplexy-generated fusions were detected in chondromyxoid fibroma, synovial sarcoma, and phosphaturic mesenchymal tumor, exhibiting a similar looped formation. In addition to elucidating the mechanisms by which Ewing sarcoma and other tumor-associated fusion genes are generated, these findings provide insight into the mutational processes underpinning Ewing sarcoma.

Major finding: Chromoplexy-generated fusion genes are linked to aggressive disease in Ewing sarcoma. Impact: The identification of chromoplexy-generated fusions elucidates a mechanism by which sarcoma may develop.

AN S/G2 CHECKPOINT REGULATED BY ATR PRESERVES GENOME INTEGRITY

Progression through the cell cycle is tightly regulated by a series of regulatory checkpoints. The G1/S, G2/M, and metaphase/anaphase transition checkpoints have been well characterized, but a checkpoint controlling the S/G2 transition has not been identified. DNA damage can activate the checkpoint kinase ATR to arrest cells in the S or G2 phase and ensure complete replication before mitosis, prompting Saldivar and colleagues to hypothesize that ATR may regulate the S/G2 transition. Inhibiting ATR in S phase accelerated mitotic entry, but ATR inhibition did not accelerate mitotic entry in G2 cells, suggesting that ATR acts in S phase to delay mitosis. However, S-phase shortening was not sufficient to explain the combined shortening of S and G2, and it was determined that, in addition to the role in S phase, ATR controlled accumulation of promitotic factors to regulate G2 duration. ATR inhibition resulted in premature accumulation of cyclin B in S phase as well as other promitotic factors, indicating that ATR suppresses transcription of G2/M genes poised for activation during S phase. Analysis of publicly available chromatin immunoprecipitation sequencing data revealed that the transcription factor FOXM1, which is frequently overexpressed in cancer, was enriched at the promitotic genes and drove premature expression of cyclin B. Inhibiting ATR in early S phase led to hyperphosphorylation of FOXM1, resulting in premature FOXM1 activation and early mitosis. Mechanistically, FOXM1 was phosphorylated by CDK1 at the S/G2 transition, and this phosphorylation switch facilitated G2 entry. In contrast, during normal DNA replication, ATR was activated by ETTA1, and prevented CDK1-dependent FOXM1 phosphorylation until G2. Thus, ATR inhibition deregulated the S/G2 transition to promote early mitosis, leading to underreplicated DNA and DNA damage. Collectively, these findings uncover an S/G2 checkpoint regulated by ATR that is responsible for maintaining genome integrity. As ATR inhibitors are being tested in cancer clinical studies, this finding could shed light on strategies to improve the efficacy of ATR inhibitors in the clinic.

An S/G2 Checkpoint Regulated by ATR Preserves Genome Integrity

Cancer Discov 2018;8:1208. Published OnlineFirst August 31, 2018.