RESEARCH ARTICLE

Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer

Karina J. Matissek¹,², Maristela L. Onozato³, Sheng Sun¹,², Zongli Zheng²,³,⁴, Andrew Schultz¹, Jesse Lee³, Kristofer Patel¹, Piia-Lotta Jerevall¹,², Srinivas Vinod Saladi¹,², Allison Macleay³, Mehrad Tavallai¹,², Tanja Badovinac-Crnjevic⁵, Carlos Barrios⁶, Nuran Beşe⁷, Arlene Chan⁸, Yanin Chavarri-Guerra⁹, Marcio Deblasio¹⁰, Elif Demirdögen¹⁰, Ünal Egeli¹⁰, Sahsuvar Gökgöz¹⁰, Henry Gomez¹¹, Pedro Liedke⁶, Ismet Tasdelen¹⁰, Sahnije Tolunay¹⁰, Gustavo Werutsky⁶, Jessica St. Louis¹, Nora Horick¹,², Dianne M. Finkelstein¹,², Long Phi Le²,³, Ardyta Bardia¹,², Paul E. Goss¹,², Dennis C. Sgroi²,³, A. John Iafrate²,³, and Leif W. Ellisen¹,²

ABSTRACT

We sought to uncover genetic drivers of hormone receptor–positive (HR⁺) breast cancer, using a targeted next-generation sequencing approach for detecting expressed gene rearrangements without prior knowledge of the fusion partners. We identified intergenic fusions involving driver genes, including PIK3CA, AKT3, RAF1, and ESR1, in 14% (24/173) of unselected patients with advanced HR⁺ breast cancer. FISH confirmed the corresponding chromosomal rearrangements in both primary and metastatic tumors. Expression of novel kinase fusions in nontransformed cells deregulates phosphoprotein signaling, cell proliferation, and survival in three-dimensional culture, whereas expression in HR⁺ breast cancer models modulates estrogen-dependent growth and confers hormonal therapy resistance in vitro and in vivo. Strikingly, shorter overall survival was observed in patients with rearrangement-positive versus rearrangement-negative tumors. Correspondingly, fusions were uncommon (<5%) among 300 patients presenting with primary HR⁺ breast cancer. Collectively, our findings identify expressed gene fusions as frequent and potentially actionable drivers in HR⁺ breast cancer.

SIGNIFICANCE: By using a powerful clinical molecular diagnostic assay, we identified expressed intergenic fusions as frequent contributors to treatment resistance and poor survival in advanced HR⁺ breast cancer. The prevalence and biological and prognostic significance of these alterations suggests that their detection may alter clinical management and bring to light new therapeutic opportunities.

Cancer Discov; 8(3); 336–53. © 2017 AACR.

See related commentary by Natrajan et al., p. 272.
See related article by Liu et al., p. 354.

¹Massachusetts General Hospital Cancer Center, Boston, Massachusetts. ²Harvard Medical School, Boston, Massachusetts. ³Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts. ⁴Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. ⁵University Hospital Zagreb, Zagreb, Croatia. ⁶Latin America Cooperative Oncology Group (LACOG) and Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil. ⁷Department of Radiation Oncology, Acibadem Breast Research Institute, Istanbul, Turkey. ⁸Mount Hospital, Perth, Australia. ⁹Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City D.F., Mexico. ¹⁰Departments of Medical Biology, General Surgery, Pathology of Medical Faculty of Uludag University, Bursa, Turkey. ¹¹Instituto Nacional de Enfermedades Neoplásicas, Lima, Perú. ¹²Biostatistics Center, Massachusetts General Hospital, Boston, Massachusetts.

Note: Supplementary data for this article are available at Cancer Discovery Online (http://cancerdiscovery.aacrjournals.org/).

K.J. Matissek, M.L. Onozato, and S. Sun contributed equally to this article.

Corresponding Author: Leif W. Ellisen, Massachusetts General Hospital Cancer Center, 185 Cambridge Street, CPZN-4204, Boston, MA 02114. Phone: 617-726-4315; Fax: 617-726-8623; E-mail: lellisen@mgh.harvard.edu. doi: 10.1158/2159-8290.CD-17-0535 © 2017 American Association for Cancer Research.
INTRODUCTION

The majority of primary breast cancers express estrogen receptor (ER) and progesterone receptor (PR) and are responsive to therapies that target the estrogen response pathway. Thus, ER and PR are favorable prognostic determinants and actionable therapeutic targets (1, 2). Nevertheless, a substantial minority of women treated for primary hormone receptor–positive (HR+) disease exhibit hormonal therapy resistance, evidenced by the eventual development of metastatic disease. The pathways that confer hormonal therapy resistance have been studied extensively, yet our understanding of them remains relatively limited. Most notable among these are growth factor signaling networks that converge on the PI3K and MAPK pathways. Somatic mutations affecting these pathways are hallmarks of HR+ breast cancer but are found in only a subset of tumors, suggesting that additional, undetected genetic events contribute to this disease (3).

The most frequent genetic alterations in primary HR+ breast cancer are mutation or amplification of the PI3K catalytic subunit gene PIK3CA (30%–40% of tumors), mutation of the TP53 tumor suppressor (≤30% of tumors), and amplification of the EGF family receptor gene ERBB2 (HER2; approximately 25% of tumors; ref. 3). These and other, lower prevalence mutations occur in overlapping subsets of tumors, and consequently many tumors lack recognizable drivers. The recent identification of mutations in ESR1 (encoding ERα) almost exclusively in treatment-refractory metastatic disease has suggested that metastases may harbor an additional proportion of disease-relevant mutations (4, 5). But even taken together, the genetic findings from standard exome sequencing and copy-number analyses are likely to represent at best a limited and incomplete picture of relevant genetic events in these tumors.

A potential group of relevant genetic events likely to be overlooked by exome-restricted DNA sequencing and traditional gene copy-number assessment are genomic rearrangements. Although whole-genome sequencing (WGS) can in theory detect many of these events, the complexity and “signal-to-noise” ratio in such analyses poses challenges, and many such rearrangements are not expressed as RNA (6). As expected, transcriptome-based analyses have also revealed the presence of intergenic fusions in breast cancer specimens (7–11). Routine detection of these events remains a challenge, however, and consequently their overall prevalence and potential clinical significance remain essentially unknown.

We recently reported the development and validation of a methodology, anchored multiplex PCR (AMP), for rapid and efficient targeted gene rearrangement detection (12). Here, we apply AMP systematically to cohorts of...
patients with early-stage and advanced HR+ breast cancers. Through complementary FISH analysis and functional studies, we reveal the frequent presence of novel, biologically and clinically relevant fusions involving potentially actionable genes and pathways in advanced HR+ breast cancer. The poor outcomes associated with these genetic lesions underscore the significance of our findings and the likely implications for breast cancer prognostication and treatment.

RESULTS

Prevalent Expressed Intergenic Fusions in Advanced HR+ Breast Cancer

AMP uses a mixture of tumor cDNA and genomic DNA as starting material. The assay has the major advantages that it does not require a priori knowledge of gene fusion partners and is compatible with low nucleic acid input from formalin-fixed, paraffin-embedded (FFPE) specimens (12). By using a nested, one-sided PCR approach AMP also allows identification of individual (pre-PCR) molecules, thereby mitigating PCR artifacts and facilitating quantitative gene expression analysis (Fig. 1A; ref. 12). We designed the AMP assay to detect fusions involving 54 solid tumor–relevant genes (Supplementary Table S1), and in our proof-of-concept study, we demonstrated a sensitivity of 100% and specificity of 100% compared with reference assays for gene rearrangement detection from FFPE samples (12).

We then applied AMP to tumor specimens from 110 sequential patients with advanced HR+ breast cancer who had presented to our clinic and had undergone clinical somatic tumor genotyping (Clinical Genotyping Cohort). This otherwise unselected patient cohort is representative of patients presenting with advanced HR+ disease, as most (>80%) had initially presented as stage II and higher, and the majority who presented with primary disease received adjuvant hormonal therapy (>90%) and/or chemotherapy (57%). Median age (49.5) was younger than average for such patients but is consistent with the demographic seen at an academic center (Supplementary Table S2). Remarkably, 14 of these patients harbored high-confidence intergenic fusions (Fig. 1B; Supplementary Table S3). Notably, the majority of these involved exon–exon fusions, including one case with an in-frame fusion of ESR1 to CCDC170, which...
has been previously reported to occur in <1% of HR+ breast cancers, and another with a fusion involving \(\text{BRAF} \) and the \(\text{SND1} \) gene, previously described in lung cancer (Supplementary Table S3; refs. 13, 14). The major identified fusion junction sequences in all cases involved at least one precise exon boundary, thereby defining the detected sequences as processed cDNA (Fig. 1C and D).

Because we wished to determine how often these fusions were present in primary tumors and the initial cohort represented a mix of primary and metastatic specimens, we next analyzed a second cohort of patients with advanced \(\text{HR}^+ \) breast cancer (\(N = 63 \)) for which both primary and matched metastatic specimens were available (Matched Primary/Metastasis Cohort; see Methods for cohort enrollment details). The clinical features of this patient cohort are very similar to those of the Clinical Genotyping Cohort, other than a slightly higher median age (58.5) and increased use of tamoxifen versus aromatase inhibitors in the adjuvant setting (Supplementary Table S2). The latter was expected, as a subset of these patients were enrolled at international sites where, until very recently, tamoxifen remained the most prescribed hormonal therapy agent. In this cohort, 10 of 63 patients were found to harbor a fusion in either the primary or metastatic specimen, 5 of which were detectable in the primary tumor (Supplementary Fig. S1A). Collectively, fusions were detected in 24 of 173 patients (14%), including 11 primary tumors (summarized in Fig. 1B). Notably, fully one-third of these fusions (8/24) involved \(\text{ESR1} \), and multiple additional recurrent fusion targets were found in these cohorts, including two fusions each involving \(\text{AKT3} \), \(\text{NOTCH1} \), \(\text{PRKCA} \) (encoding protein kinase C), and \(\text{BRAF} \) (Supplementary Table S3). Among the most notable alterations identified were in-frame fusions involving the key oncogenic drivers PIK3CA, \(\text{AKT3}, \text{RAFI} \) (also known as \(\text{CRAF} \)), and \(\text{ESR1} \), in each case fused to a distinct partner gene (Fig. 1C and D, Supplementary Fig. S1B and C).

In order to characterize these samples in more detail, we also performed mutational analysis using a site-specific, clinical laboratory assay that detects 120 recurrent mutations in 16 key cancer genes (Supplementary Table S4; ref. 15). We identified somatic driver mutations in 34% (59/173) of these patients, the majority involving PIK3CA as anticipated (Fig. 1B). Discordance between mutations detected in matched primary and metastatic specimens was noted as previously reported (16), and such discordance was also observed for fusions (Supplementary Fig. S1A). Interestingly, we did not observe a statistical association between the presence or absence of mutations and that of fusions in these cohorts (Fig. 1B).

In Situ Hybridization Confirms Fusion-Associated Genomic Rearrangements

As a next step to credential the potential relevance of these fusions, we sought to confirm the presence of the corresponding chromosomal rearrangements using an independent methodology, FISH. Approximately half of the detected intergenic fusions we identified involved genes on different chromosomes (Supplementary Fig. S2A). And among those involving genes on the same chromosome, in most cases the direction of transcription and/or centromere–telomere orientation predicted a genomic rearrangement detectable by FISH. We used a "break-apart" FISH strategy, incorporating different color probes 5' and 3' of the interrogated genetic loci, so that genomic rearrangement is evidenced by a separation of the normally juxtaposed red and green signals (Fig. 2A; ref. 17). The FISH approach also allowed us to ask whether these rearrangements were clonal (appearing in most or all identifiable tumor cells within a specimen), and whether they were present in primary tumors and metastases from the same patient.

FISH analysis confirmed a rearrangement of the respective locus in each AMP-positive tissue tested. Thus, FISH “break-apart” of the \(\text{RAFI} \) gene was evident in two distinct metastatic specimens from a patient harboring a \(\text{CTNNBL1}–\text{RAFI} \) fusion detected by AMP (Fig. 2B). Break-apart of \(\text{AKT3} \) was evident in both the primary and two metastatic specimens from a patient harboring an \(\text{RPS6KC1}–\text{AKT3} \) fusion detected by AMP (Fig. 2C). Notably, in this case, FISH identified both rearrangement and high-level amplification of the \(\text{AKT3} \) locus in the primary and metastatic lesions (Fig. 2C). Break-apart of \(\text{ESR1} \) was evident in a primary tumor and multiple metastases from a patient whose tumors all demonstrated an \(\text{ESR1}–\text{COA5} \) fusion upon AMP analysis (Fig. 2D). Additionally, the previously described \(\text{ESR1}–\text{CDCC170} \) fusion detected by AMP was confirmed upon FISH analysis for \(\text{ESR1} \) (Supplementary Fig. S2B). Finally, a fusion involving \(\text{BRAF} \) and the \(\text{SND1} \) gene was detected by AMP and was validated by FISH in two independent patients (Fig. 2E; ref. 14). We then developed IHC assays for RAf1 and \(\text{AKT3} \) and observed high-level protein expression of the respective driver genes in both primary and metastatic tumors expressing these fusions (Supplementary Fig. S2C and S2D). Notably, fusion-negative breast cancer cases show little or no expression of these proteins. Collectively, these findings support fusions detected by AMP as bona fide, expressed genomic aberrations.

Oncogenic Activation of Signaling, Proliferation, and Survival by Novel Kinase Fusions

Several novel kinase-associated fusions we identified juxtapose a fully intact catalytic domain of the respective kinase to the partner gene (Supplementary Fig. S1B). In order to assess the potential contribution of these fusion proteins, we first analyzed their effects in nontransformed mammary epithelial cells (MCF10A). We synthesized cDNAs encoding predicted fusions involving PIK3CA, \(\text{RAFI} \), and \(\text{AKT3} \) and introduced them via lentiviral vectors, demonstrating stable expression of proteins of the predicted molecular weight in each case (Fig. 3A). Furthermore, expression of these altered kinases was sufficient to activate mTORC1 signaling in these cells. This was evidenced by increases in phosphorylation of downstream substrates, including p70 S6 kinase (S6K1) and its substrate ribosomal protein S6 (S6P6), which was most evident in the absence of serum (Fig. 3B).

To assess the phenotypic effects of pathway activation by these kinase fusions, we determined their effect on actin growth in three-dimensional (3-D) basement membrane
Figure 2. FISH analysis confirms fusion-associated genomic rearrangements in primary and metastatic tumors. A, Schematic diagram showing the identification and chromosomal localization of 5′ (green) and 3′ (red) BAC clones that served as FISH probes for the respective genes (black arrows) interrogated in AMP. All diagrams are oriented with ascending chromosomal location left to right. Adjacent genes are also shown (thick bars). B–E, Photomicrographs showing gene-specific rearrangement confirmation by FISH analysis of primary and patient-matched metastatic (Met) AMP tumors using red and green probes flanking the indicated genes. Adjacent red/green signals indicate an intact locus. White arrows indicate rearrangement (nonadjacent green or red signals). Rearranged AKT3 locus also shows genomic amplification. The respective AMP-detected fusions are CTNNBL1–RAF1, RPS6KC1–AKT3, ESR1–COA5, and BRAF–SND1. A minimum of 200 nuclei were counted per specimen. Scale bars, 10 μm. (Note, ACLT6A and PIK3CA are adjacent genes not amenable to break-apart FISH analysis.)
Figure 3. Novel kinase fusions promote oncogenic phenotypes in mammary epithelial cells. A, Western blot showing lentiviral-mediated expression of the indicated fusion proteins in MCF10A cells. Endogenous PIK3CA comigrates closely with ACTL6A–PIK3CA. B, Kinase fusions activate mTORC1 signaling, evidenced by increased pS6 kinase (pS6K, T389) and pS6 (S235/236) in Western analysis of lysates from MCF10A cells expressing the indicated fusions. Differences are most notable in the absence of serum. C, MCF10A cells were transduced with lentiviral vectors expressing the indicated fusions (left) followed by plating at clonal density in 3-D basement membrane culture. Scale bar, 50 μm. Right graphs show quantitation of deregulated growth and polarization (morphology) and cell survival (filled lumen) conferred by each fusion. Values plotted represent mean from eight replicate wells with 200 acini counted in each of three independent experiments. Error bars indicate SD. *P < 0.05; **P < 0.01; ***P < 0.001. D, AKT3 fusion promotes cell survival in 3-D culture. Left, photomicrographs of acini in Matrigel cultures stained with ethidium bromide (EtBr) to indicate cell death. Scale bar, 100 μm. Right, summary of EtBr-positive acini, counted and analyzed as described in C. **P < 0.01.
Expression of each fusion induced significant abnormalities in 3-D culture, and, furthermore, each produced a distinct disruption of the typical acinar growth. The PIK3CA fusion showed the strongest effect on cell growth, acinar morphology, and polarization, evidenced by the appearance of large, disordered structures (Fig. 3C). In contrast, all three fusions were associated with a significant increase in filled acinar structures (Fig. 3C). The filled acinar phenotype indicates defective apoptosis, because a well-described apoptotic program is known to be required for acinar luminal clearance in this setting (20).

We next used an independent assay to detect the apoptotic program in this context by staining acini with ethidium bromide, which is nonpermeable to viable cells. We found, as predicted, that control 3-D acinar structures exhibited ethidium-stained nuclei, indicating cell death, commensurate with luminal hollowing (Fig. 3D). In contrast, structures expressing the AKT3 fusion demonstrated near-complete absence of ethidium-stained cells, which correlated with the highest proportion of filled acinar lumens (Fig. 3D). The RAFl and PIK3CA fusions conferred a nonsignificant trend toward decreased ethidium staining in 3-D culture (Fig. 3D; Supplementary Fig. S3), consistent with their effects on acinar filling (Fig. 3C). Thus, these kinase fusions activate phosphoprotein signaling and induce oncogenic deregulation of cell growth, polarity, and survival in mammary epithelia.

RPS6KC1–AKT3 Is a Constitutively Membrane-Associated and Activated Kinase

We then sought to uncover a specific mechanism of fusion-mediated kinase deregulation. We focused on the fusion involving RPS6KC1 and AKT3, as the encoded protein had the strongest effect on cell survival in 3-D culture. RPS6KC1 encodes a pseudokinase whose amino terminus contains a PX domain, an established phosphoinositide (PI) binding motif (Fig. 4A; ref. 21). AKT3 encodes an established oncogene that is frequently subject to genomic amplification in gliomas and other tumors (22). The identified fusion juxtaposes the PX domain of RPS6KC1 to a nearly intact AKT3 protein. Importantly, PX domains typically bind a broader variety of PI species than does the pleckstrin homology (PH) domain of AKT3 (21). Thus, we hypothesized that the kinase fusion might be rendered constitutively active by virtue of membrane recruitment in the absence of PI3K activation and subsequent PI3D generation (Fig. 4A). To test this hypothesis, we performed a direct biochemical and functional comparison of the RPS6KC1–AKT3 fusion to wild-type AKT3. Expression of RPS6KC1–AKT3 and AKT3 at comparable levels in MCF10A indeed revealed increased basal phosphorylation of the fusion in the absence of serum (Fig. 4B; Supplementary Fig. S4A). Correspondingly, we observed elevated phosphorylation of the direct AKT substrates FOXO3A and Tuberin (TSC2) and of the downstream substrate RPS6 following expression of the fusion compared with wild-type AKT3 (Fig. 4B; Supplementary Fig. S4B).

In order to test directly the prediction that RPS6KC1–AKT3 was constitutively membrane-associated, we fractionated serum-starved or stimulated cells expressing the fusion or wild-type AKT3. We observed the expected weak membrane localization of wild-type AKT3 in starved cells, followed by marked membrane recruitment with serum stimulation. In contrast, the fusion protein was constitutively membrane localized in multiple cell types and demonstrated no further membrane recruitment upon serum stimulation (Fig. 4C; Supplementary Fig. S4C and S3D). Consistent with these findings, expression of RPS6KC1–AKT3 induced nuclear exclusion of FOXO3A, which is known to be induced by phosphorylation, in MCF10A (Fig. 4D). The effects of this novel kinase were further corroborated in 3-D culture, as the expression of the fusion produced large, disordered acini with filled lumens, which appeared identical to those described previously following expression of a constitutively active (myristoylated) AKT (Fig. 3C; ref. 23). Thus, RPS6KC1–AKT3 fusion produces a constitutively membrane-associated and activated kinase with oncogenic properties.

Deregulation of Hormone Dependence and Drug Response by Kinase Fusions

We hypothesized that these novel fusions, as potential drivers of hormone-dependent breast cancers, would alter hormone dependence and the response to hormonal therapy in cell-based HR+ breast cancer models (24, 25). We therefore expressed three novel kinase fusions involving RAFl, AKT3, and PIK3CA in estrogen-dependent MCF7 and T47D breast cancer cells (Fig. 5A; Supplementary Fig. S5A). Both RAFl and AKT3 fusions substantially activated downstream phosphoprotein signaling in these cells (Fig. 5B). Further demonstrating the activity of these kinases in this context, expression of the AKT3 fusion conferred resistance to a small-molecule AKT inhibitor (MK-2206), whereas expression of the RAFl fusion conferred resistance selectively to the clinical MEK1/2 inhibitor trametinib (Supplementary Fig. S5B; refs. 26, 27).

Altered signaling induced by the different fusions produced remarkably distinct effects on hormone-dependent proliferation. Although MCF7 and T47D cells normally undergo complete arrest in the absence of estrogen, expression of the AKT3 fusion consistently conferred estrogen-independent proliferation in both models (Fig. 5C; Supplementary Fig. S5C; refs. 24, 25). We further tested hormone independence conferred by the AKT3 fusion using a recently described MCF7 derivative, MCF7PIK3CAWT, in which the endogenous PIK3CA mutation in the parental line has been corrected via somatic gene targeting (28). Like parental MCF7, this line is highly estrogen-dependent for proliferation. Additionally, we directly compared effects of the AKT3 fusion in MCF7PIK3CAWT to that of an established transforming breast cancer mutant oncogene, AKT1E17K (29). Both AKT proteins potently induced downstream PI3K/mTORC1 signaling in MCF7PIK3CAWT cells (Supplementary Fig. S5D). We also observed that both the AKT3 fusion and AKT1E17K were sufficient to drive estrogen-independent proliferation in MCF7PIK3CAWT (Fig. 5D). Numerous studies...
Figure 4. RPS6KC1–AKT3 encodes a constitutively active kinase. A, Proposed model for fusion activation, mediated by constitutive association with diverse membrane phosphoinositides via the RPS6KC1 PX domain, contrasting with AKT3, whose membrane-associated activation via the PH domain requires PI3K-dependent generation of PI(3,4,5)P3. Downstream AKT substrates are also shown. B, Comparison of phosphoprotein signaling induced by ectopic AKT3 versus RPS6KC1–AKT3 fusion in MCF10A. In basal (serum-starved) condition, the fusion shows increased phosphorylation of itself (AKT S473), the direct AKT substrates FOXO3A (S253) and TSC2 (T1462), and downstream S6 (S235/236), compared with AKT3. C, RPS6KC1–AKT3 fusion is constitutively membrane localized in the absence of serum, shown in the plasma membrane fraction of MCF10A cells expressing the fusion or wild-type (WT) AKT3. Tubulin and pan-cadherin serve as controls for cytosolic and membrane fractions, respectively. Summary data from multiple experiments for panels B and C are shown in Supplementary Fig. 4A–C. D, RPS6KC1–AKT3 expression is sufficient to induce nuclear export of FOXO3A, shown by immunofluorescence staining of MCF10A. At right, quantitation of nuclear (N) and cytosolic (C) FOXO3A staining, with 200 cells counted per condition in each of three independent experiments. P values by two-tailed Students t test. *** P < 0.001. Scale bar, 50 μm.
have linked such proliferation to AKT-dependent stabilization of cyclin D1 via phosphorylation of GSK3β (30). Accordingly, we observed that both the AKT3 fusion and AKT1 E17K expression triggered an increase in cyclin D1 levels in estrogen-starved MCF7/PIK3CA WT cells (Fig. 5E).

Distinct effects were observed with the RAF1 fusion, which did not confer estrogen-independent growth but instead switched the typical inhibitory effect of 4-OH tamoxifen, a competitive ER modulator, to a stimulatory one at low doses (Fig. 5F). In keeping with a receptor-dependent mechanism for this effect, the paradoxical stimulation was not observed with fulvestrant, keeping with a receptor-dependent mechanism for this effect, the typical inhibitory effect of 4-OH tamoxifen, a competitive ER antagonist but not by 4-OH tamoxifen (31). Receptor-dependent effects of each kinase fusion were further corroborated by analysis of the canonical ER transcriptional target genes CCND1 (encoding cyclin D1) and TFF1. Cells expressing each kinase exhibited enhanced basal expression of these genes, whereas we observed distinct effects of the different fusions on estrogen-induced gene expression (Supplementary Fig. S5E).

RPS6KC1–AKT3 Drives Progression of Hormone-Dependent Tumors In Vivo

We next used an established in vivo model of HR breast cancer in order to further explore the potential oncogenic function of the AKT3 fusion (32). We transplanted T47D cells expressing either the RPS6KC1–AKT3 fusion or the control vector into the mammary fat pad of immunodeficient mice (Fig. 6A). As anticipated, control cells formed slow-growing tumors in the presence of exogenous estradiol (32). In contrast, fusion-expressing cells produced significantly larger tumors in less than one month (Fig. 6B). We then withdrew supplemental estrogen from these tumor-bearing mice, in order to mimic the effect of therapies such as aromatase inhibitors that function essentially by lowering systemic estrogen levels. As anticipated, control tumors were highly sensitive to estrogen deprivation, exhibiting significant regression in a period of days (Fig. 6C and D). Tumors expressing the AKT3 fusion, by comparison, showed no significant regression following estrogen withdrawal (Fig. 6C and D). We wished to compare these effects with those of a recognized transforming breast cancer gene and in the absence of a background PIK3CA mutation, so we repeated these experiments in MCF7/PIK3CA WT, transplanting cells expressing the AKT3 fusion, AKT1 E17K, or the control vector. Even controlling carefully for protein expression (Supplementary Fig. S5D), we observed a more highly significant increase in tumor progression with AKT3 fusion–expressing tumors than with AKT1 E17K-expressing tumors compared with the control vector (Supplementary Fig. S6A). Furthermore, upon estrogen withdrawal AKT3 fusion–expressing tumors showed minimal regression over a 2-week period. In contrast, vector-expressing MCF7/PIK3CA WT tumor regressed more than 30%, and AKT1 E17K-expressing tumors exhibited partial resistance (15% regression; Supplementary Fig. S6B and S6C).

A recent change to the standard approach for treatment of advanced HR breast cancer involves the combination of hormonal therapy with inhibitors of the cell-cycle regulatory cyclin-dependent kinases CDK4 and CDK6 (33). Accordingly, we tested whether the combination of estrogen withdrawal and the CDK4/6 inhibitor palbociclib could overcome therapeutic resistance conferred by AKT3 fusion expression in vivo (Fig. 6A). Remarkably, this combination completely abolished the advantage observed in fusion-expressing tumors, inducing a regression in both these and control tumors substantially more profound than that induced by hormone withdrawal alone (Fig. 6E). To corroborate these effects at the cellular level, we stained the resulting tumors for the proliferation marker Ki67, an established correlate of response in human breast cancer (34). Although AKT3 fusion–expressing tumors exhibited a marginally higher Ki67 fraction than control tumors following estrogen withdrawal, palbociclib treatment virtually eliminated Ki67-positive cells in both cases (Fig. 6F and G). Biochemical analysis further supported the ability of palbociclib to overcome effects of the activated AKT3 fusion. Phosphorylated retinoblastoma protein (RBI), the target of CDK4/6, was elevated in the absence of estrogen in AKT3 fusion–expressing cells compared with controls, but was completely suppressed in both cases following palbociclib treatment (Fig. 6H). Thus, this activated kinase fusion confers resistance to traditional hormonal therapy approaches that can be overcome by newly available therapeutic combinations.

Intergenic Fusions Are Enriched in Advanced Disease and Confer Decreased Overall Survival

Taken together, the findings above imply a contribution of identified fusions to aggressive behavior and treatment...
Figure 6. The RPS6KC1–AKT3 kinase fusion promotes tumor progression and confers hormonal therapy resistance in vivo. A, Schematic experimental outline. Tumors are established by injection of T47D cells expressing the control vector or RPS6KC1–AKT3 into mammary fat pads of mice bearing supplemental estrogen (E2) tablets. B, RPS6KC1–AKT3 promotes tumor growth in vivo. Vector, N = 19; RPS6KC1–AKT3, N = 19. Note that day 0 is defined as the first-day measurable tumors evident in both populations, 7 days after injection. P value was determined by two-way multiple-measures ANOVA. ***, P < 0.001. C, Tumor-bearing mice underwent supplemental estrogen withdrawal (day 0, 41 days after injection). Tumors expressing RPS6KC1–AKT3 (N = 7) fail to regress relative to control tumors (N = 9). P value determined as in B. D, The representative tumors from C and D show comparable reductions by palbociclib in both cases. Graph represents >20 high-powered fields counted per tumor for 4 tumors in each group. Error bars, SD. ***, P < 0.001. H, Phosphorylated RB1 (Rb, S780) is increased in estrogen-starved RPS6KC1–AKT3-expressing cells but is extinguished by palbociclib (500 nmol/L, 24 hours).
Frequent Expressed Gene Fusions in HR+ Breast Cancer

Kaplan–Meier curves were then constructed to illustrate the relationship between fusion or mutation status and each clinical outcome. Cox proportional hazards models, stratified by cohort, were used to assess the association between clinical outcomes, fusions, and mutations. (Notably, as these cohorts represented patients treated prior to 2015, no patients received CDK4/6 inhibitors as either adjuvant therapy or early-line treatment in the metastatic setting.) Patients with fusion-positive tumors demonstrated a trend toward shorter time from initial diagnosis to metastatic recurrence (TTR) than those with fusion-negative tumors [Fig. 7A, hazard ratio (HR) = 1.56, \(P = 0.06 \)]. By comparison, the subset of somatic oncogenic driver mutations assessed in these cohorts were not associated with differences in TTR (Fig. 7B, HR = 1.04, \(P = 0.83 \)).

Clinical characteristics did not differ significantly by fusion status, suggesting that any association between fusion status and survival would not be affected by clinical confounders (Supplementary Table S2).

Figure 7. Expressed intergenic fusions are associated with an aggressive clinical course and short survival. A and B, Kaplan–Meier analysis demonstrating a trend toward shorter time to metastasis for patients whose tumors were positive versus negative for (A) gene fusion [hazard ratio (HR) = 1.56; \(P = 0.06 \)] but not for (B) assessed somatic mutations (HR = 1.04; \(P = 0.83 \)). C and D, Shorter survival time post development of metastasis for (C) fusion-positive versus fusion-negative patients (HR = 2.37; \(P = 0.01 \)) but not for (D) mutation-positive versus mutation-negative patients (HR = 1.04; \(P = 0.90 \)). (continued on next page)
Most strikingly, fusion-positive status was associated with highly significant decreases both in survival from time of metastatic recurrence (Fig. 7C, HR = 2.37, P = 0.01) and in overall survival (OS) from time of initial diagnosis (Fig. 7E, HR = 3.11, P = 0.0009). In contrast, the assessed somatic mutations were not significantly associated with either of these survival metrics (Fig. 7D and F).

Finally, we tested the hypothesis that as drivers of poor outcomes, fusions would be less common among patients presenting with primary (nonmetastatic) HR+ breast cancer, the large majority of whom are cured. Thus, we assembled a cohort of 300 such patients (Primary Diagnosis Cohort; Supplementary Table S5) and created tissue microarrays of the primary tumors, allowing us to screen the entire cohort by FISH for fusions corresponding to the most commonly implicated fusion genes. Analysis of all cases with probes for PIK3CA, ESR1, RAF1, and AKT3 (which together comprised approximately half of the fusions among our cohorts with advanced HR+ cancer) revealed only 12 possibly abnormal patterns by FISH. Furthermore, subsequent molecular analysis of these cases with the AMP assay demonstrated only a single bona fide fusion involving ESR1 and CCDC170 (Supplementary Table S6). Although this was not a complete analysis of all possible fusions and was by design limited to analysis of primary tumors, these results are consistent with a high prevalence of fusions selectively in patients with biologically aggressive metastatic disease and poor outcomes.

DISCUSSION

This study reveals the remarkable prevalence of expressed intergenic fusions involving key cancer genes in patients with advanced HR+ breast cancer. The direct contribution of these genomic alterations to the pathophysiology of these cancers is supported by a number of our observations. First, we confirmed by FISH that these genomic rearrangements are present within the tumor and are associated with protein expression. Second, we observed that the rearrangements and protein expression can be found in both primary and/or multiple matched metastases from the same patient. Third, we provide evidence that multiple novel fusions produce active and deregulated kinases that confer oncogenic phenotypes in breast epithelial models. Fourth, we demonstrate that such fusions are sufficient to disrupt hormonal-dependent proliferation, transcription, and tumor progression in HR+ breast cancer models both in vitro and in vivo. Notably, the most prevalent fusions detected involve ESR1, a finding that supports their relevance to the pathogenesis of HR+ breast cancer. Finally, we show that patients whose tumors harbor these fusions have markedly more rapid progression and shorter survival than fusion-negative patients.

Our analyses also reveal that these gene fusions appear distinct in their implications from other common somatic genetic events in HR+ breast cancer. For example, somatic mutations in PIK3CA are common in tumors of patients presenting with primary (curable) disease, and in this setting are generally associated with more favorable outcomes (36). In contrast, somatic mutations in ESR1 are found almost exclusively in metastatic lesions, and typically only in the setting of acquired resistance to multiple prior rounds of hormonal therapy (4, 5). The fusions we have uncovered are present in some cases in both primary and metastatic tumors, whereas in other cases only in metastases, and prior to specific therapy in the metastatic setting. Their enrichment selectively in patients who develop metastatic disease is consistent with a role in de novo treatment resistance, whereas their appearance...
Frequent Expressed Gene Fusions in HR+ Breast Cancer

...tumors and their association with poor survival that we frequent drivers of treatment resistance and poor outcomes in ongoing (39). The expanding therapeutic arsenal of kinase pathway inhibitors further implies that such fusions, as well as ER gene fusions, may be immediately actionable in the setting of appropriately designed clinical trials (38). An individualized approach to targeting these fusions will likely be required, however, as evidenced by the distinct effects of different fusions on hormonal signaling and cell growth that we observe.

Despite their heterogeneity, our detailed analysis of the AKT3 fusion suggests that newly approved therapies for HR+ breast cancer including CDK4/6 inhibitors may overcome treatment resistance associated with some fusions. As noted, patients in this study did not receive CDK4/6 inhibitors as treatment for their primary disease, as these agents are not yet FDA approved for this indication. However, two additional patients harboring fusions we subsequently identified who developed metastatic HR+ disease following standard hormonal therapy did receive a combination of hormonal therapy and a CDK4/6 inhibitor for treatment of their metastatic disease. Both of these patients experienced significant clinical benefit. Because our study implies that patients with fusion-positive tumors are more likely to develop metastatic disease, the potential ability of CDK4/6 inhibitors to overcome fusion-mediated hormonal therapy resistance could portend a positive impact on relapse-free survival in the adjuvant treatment of early-stage breast cancer, an indication for which clinical trials are currently ongoing (39).

In summary, our findings reveal intergenic fusions as frequent drivers of treatment resistance and poor outcomes in advanced HR+ breast cancer. Given their presence in primary tumors and their association with poor survival that we demonstrate, it seems likely that routine detection of such alterations could ultimately lead to successful targeting and a major impact on long-term disease outcomes.

METHODS

Tissue Samples and Clinical Data Collection

The Clinical Genotyping Cohort comprised a retrospective set of sequential patients with advanced ER+ and/or PR+ breast cancer who presented to Mass General and underwent local somatic genotyping by physician order between 2010 and 2014. All were tested for HER2 by IHC and/or FISH and none were positive. A single tissue sample was tested by AMP (either primary tumors or metastatic lesions depending on availability). The only exclusion was for nucleic acid samples that did not pass QC analysis for AMP testing. The Primary Diagnosis Cohort comprised a retrospective set of patients with who presented with primary ER+ and/or PR+ breast cancer and had locally available FFPE primary tumor tissue. For these two cohorts, retrospective use of discarded, clinically collected tissue, and limited clinical data was reviewed and approved by the Mass General/ Harvard Cancer Center (HCC) Institutional Review Board (IRB) with waiver of consent. The Matched Primary/Metastatic Cohort included patients with available matched tissue specimens who presented with advanced ER+ and/or PR+ breast cancer to collaborating international institutions or Mass General between 2000 and 2012. All except four underwent HER2 testing by IHC and/or FISH; five were positive (all fusion-negative) and none received anti-HER2 therapy. Eligible patients signed written informed consent for participation in the study, which was approved by the HCC IRB and the individual local IRBs, all of which follow the U.S. Common Rule or the International Ethical Guidelines for Biomedical Research Involving Human Subjects (CIOMS). Concordance between fusion detection in primary and metastatic tumors for this cohort is illustrated in Supplementary Fig. S1A.

DNA Extraction, Anchored Multiplex PCR, and Somatic Genotyping

The methodology for each of these has been described previously (12, 15). Briefly, total nucleic acids containing total RNA and genomic DNA were extracted from FFPE tissue specimens, using the Agencourt FormaPure Kit for FFPE Tissue (Beckman Coulter). For AMP analysis, first- and second-strand complementary DNA (cDNA) synthesis was performed using a combination of SuperScript III (Life Technologies), DNA Polymerase I (Enzymatics) and RNAase H (Enzymatics). The resulting cDNA/DNA underwent end repair (End-Repair Mix, Enzymatics), adenylation (Klenow Exo-, Enzymatics; Taq Polymerase, Life Technologies), and ligation (T4 DNA Ligase, Enzymatics) with a universal Y adaptor containing a sample barcode, universal priming site, and Illumina sequencing priming site. Ligated libraries were subjected to two rounds of nested PCR at 10 to 14 cycles each for target enrichment (Platinum Taq Polymerase, Life Technologies). The first round of PCR was performed using a primer complementary to the universal adapter and a first pool of target-specific primers (Operon). A second round of PCR is executed using a 3′ nested universal adapter primer downstream of the first adapter primer and a second pool of 3′ nested target-specific primers downstream of the respective initial first-pool target primers. These nested primers are each 5′ tagged with a common sequencing adapter which, in combination with the first half-functional universal adapter, creates target amplicons ready for clonal amplification and sequencing. Libraries are quantitated using quantitative PCR (Kapa Biosystems), normalized, and processed for sequencing on an Illumina Nextseq 500 instrument according to the manufacturer’s standard protocol. Sequencing reads were demultiplexed using Illumina’s bcl2fastq script. BWAMEM was used to align reads to their respective positions according to the NCBI reference genome hg19. Marking of duplicate reads and base quality recalibration is performed using Picard tools and GATK. Suspect chimeric fusion reads after alignment are then called and annotated with a custom script as described (12). For the cohort an average coverage of 200× was obtained per sample, and fusions were prioritized by filtering out known recurrent sequencing artifacts, identifying at least 5 supporting reads, and confirming in-frame status of predicted fusion transcript translated products. The gene and exon targets for fusion analysis are listed in Supplementary Table S1. Site-specific somatic genotyping was performed as described (15), using an adaptation of the Applied Biosystems (ABI) Prism SnAPhor Multiplex system originally developed to detect single nucleotide polymorphisms (SNP). In essence, multiplex PCR with gene-specific primers was followed by primer extension with differentially fluorescent-labeled nucleotides, then extension products were resolved by an
automatic capillary sequencer (ABI PRISM 3730 DNA Analyser, Life Technologies/Applied Biosystems) as described (15). Data analysis for SNAPSHOT genotyping was performed with GeneMapper Analysis Software version 4.0 (Life Technologies/Applied Biosystems). The gene and residue targets for fusion analysis are listed in Supplementary Table S4.

FISH Analysis

Gene rearrangements were analyzed using a break-apart probe strategy, with two probes spanning the 3′ (spectrum orange label) and 5′ (spectrum green label) ends. In this approach, a fused signal is observed in normal cases, and split signals, green and orange, are seen when translocation is present. BAC clone (probe) searches were performed using the University of California Santa Cruz (UCSC) Genome Browser (http://genome.ucsc.edu/) mapped to December 2013 (GRCh38/hg38) Human Genome Assemblies. BACs were purchased from Children’s Hospital Oakland Research Institute (CHORI, Oakland, CA; http://bacpac.chori.org/). BAC clones that showed nonspecific hybridization were discarded. All BAC clones used are shown in Supplementary Fig. S1. Purified BAC DNA was amplified and directly labeled with spectrum orange or spectrum green dUTPs (Enzo Life Sciences) by nick translation (Abbott Molecular Inc.) according to the manufacturer’s protocol. Tissue sections (5 μm) were deparaffinized, pretreated with Tris/EDTA, pH 7.0, and treated with Digest-all (Thermo Fisher) at 37°C for 90 minutes. After washing with 2× saline sodium citrate (SSC), sections were dehydrated in ethanol and dried. Slides were co-denatured with FISH probes using a Hybrite slide processor (Abbott Molecular Inc.) at 85°C for 5 minutes. Hybridization was performed overnight at 40°C. After hybridization completion, slides were washed two times in 2× SSC/0.1% Nonidet-40 for 3 minutes each at 72°C, rinsed in water and mounted in Vectashield (Vector Laboratories) containing 4,6-diamino-2-phenyldiyl)amine (DAPI) as a counterstain. The probes were visualized using an Olympus BX61 microscope and analyzed with Cytovission software (Leica Biosystems). One hundred nuclei were scored in each TMA core, and the positive cases were subsequently confirmed in their tissue blocks. In the tissue blocks, tumor area was located before analysis. The number of “break-apart” or split signals was searched, and a separation of at least two signal diameters was considered as the threshold for a positive split signal. The presence of 5% or more of split signals was indicative of true positive result.

Cell Lines, Cell Culture, and Drug-Sensitivity Studies

Cells were maintained at 37°C in 5% CO2, MCF7 (ATCC) and T47D (ATCC) cells were grown in RPMI (Lonza) supplemented with 10% FBS (SAFC), 1% penicillin (Gibco), streptomycin (Gibco), and glutamine (Gibco). MCF10A cells were grown in DMEM/F12 (Lonza), 5% horse serum (Gibco), 20 mg/mL EGF (Sigma), 10 μg/mL insulin (Sigma), 1 ng/mL cholera toxin (Sigma), and 100 μg/mL hydrocortisone (Sigma). All cell lines except MCF10A were diluted with Cytovision software (Leica Biosystems). One hundred nuclei were visualized using an Olympus BX61 microscope and analyzed via Western blotting.

Protein Extraction and Western Blot Analysis

For total protein extraction, cells were lysed in RIPA buffer [10 mmol/L Tris–HCl pH 7.5, 150 mmol/L NaCl, 1 mmol/L EDTA, 1% (w/v) sodium deoxycholate, 0.1% (w/v) SDS, 1% (v/v) NP40, proteinase inhibitor cocktail, phosphatase inhibitor cocktail] for 30 minutes at 4°C. The protein samples were mixed with SDS sample buffer and boiled for 10 minutes before being subject to SDS-PAGE. The protein samples on the SDS-PAGE gel were then transferred onto PVDF membrane (Millipore), which was blocked by 5% nonfat milk in PBST (PBS plus 0.02% Tween 20) at room temperature for 1 hour. Then, the PVDF membrane was incubated with primary antibodies diluted in 3% BSA in PBST at 4°C overnight and horseradish peroxidase-conjugated secondary antibodies (Sigma) diluted in 3% BSA in PBST at room temperature for 2 hours. The signal was detected by enhanced chemiluminescence solution (PerkinElmer).

Antibodies used are listed in Supplementary Table S8.

3-D Culture, Indirect Immunofluorescence Staining of MCF10A Acini, and Ethidium Bromide Staining Analysis of Cell Death

Three-dimensional culture of MCF10A was performed as described previously (44). Briefly, fusion-expressing MCF10A cells were diluted to a final concentration of 25,000 cells/mL, and Matrigel (Corning) was added in a 1:1 ratio. Matrigel-cell mixture was plated in 8-well chamber slides (lab-tek), 400 μL in each well. Cells were grown in a 5% CO2 humidified incubator. MCF10A acini were cultured in Matrigel by using an immunofluorescence application kit (Cell Signaling Technology) according to the manufacturer’s instructions. Analysis for SNaPshot genotyping was performed with GeneMap-96-well plates and exposed to varying doses of MK-2206 (1 nmol/L to 100 nmol/L) and trametinib (100 pmol/L to 100 nmol/L) and assayed after 3 days. To determine cell proliferation upon drug treatment, CellTiter-Glo Luminescent Cell Viability Assay (Promega) was used according to the manufacturer’s recommendations.
Frequent Expressed Gene Fusions in HR+ Breast Cancer

Animal Studies

All animals were housed and treated in accordance with protocols approved by the Subcommittee on Research Animal Care at the Massachusetts General Hospital. Female athymic nu/nu mice (5–6 weeks) were anesthetized with Avertin (2.5% 2,2,2 tribromoethanol in sterile 1 × PBS) at 16 μL/g (45). Animals were implanted with 60-day slow-release pellets containing 0.72 mg of 17β-estradiol (Innovative Research of America; ref. 46). Xenograft tumors were generated by subcutaneous injections of 8 × 10⁶ T47D cells expressing RPS6KC1- AKT3 or empty vector suspended in 1:1 Matrigel into the mammary fat pad of nude mice. Tumors were measured twice weekly by caliper, and volumes were calculated by the formula 0.5(length × width)².

For analysis of cell death during 3-D culture, ethidium bromide was used to discriminate dead from live cells, and at least 200 acini were analyzed per construct. To distinguish cell–cell junctions, acini were stained with anti–β-catenin (Supplementary Table S8) at 1:100 dilution

Statistical Methods

We evaluated the effect of fusions and somatic mutations on three clinical outcomes: overall survival, time from initial diagnosis to metastasis, and survival from time of metastasis. The analyses included data from 101 patients in the Clinical Genotyping Cohort (9 of 110 patients tested were excluded due to missing date of primary diagnosis) and 80 in the Matched Primary/Metastasis Cohort (1 of 81 due to missing data), including 21 who had metastatic disease at the time of initial diagnosis. All patients underwent both AMP and SNaPshot genotyping analysis with the exception of 5 patients lacking SNaPshot data in the Clinical Genotyping Cohort, and 13 lacking SNaPshot data and 18 lacking AMP data in the Matched Primary/Metastasis Cohort. Overall survival was defined as the time from initial diagnosis to death (event) or last follow-up (censored), and the analysis of overall survival included patients with metastatic disease at the initial diagnosis. The analysis of time from initial diagnosis to metastasis included patients who were metastatic at initial diagnosis, and event times were observed for all included patients (no censoring). The analysis of survival from time of metastasis to death included both patients who were and were not metastatic at diagnosis. Patients with inadequate data to define a given event time were excluded from the analysis of that event, and those without data for fusion (or mutation) status were excluded from the analyses of the effect of fusion (or mutation) status on each clinical outcome. For the analyses of overall survival and survival from time of metastasis, patients who were known to be deceased but had unknown death dates were treated as alive/censored at the date of last follow-up. Kaplan–Meier curves were constructed to illustrate the relationship between fusions and mutations and each clinical outcome. Cox proportional hazards models were used to assess the association between clinical outcomes and fusions and mutations. These models included the study cohort as a stratification factor which allows for a different underlying hazard function for the two cohorts. Hazard ratios estimated from these models reflect the increase in the hazard rate for a given event associated with positive status for fusion or mutation, with an associated two-sided P value of less than 0.05 indicating a statistically significant association. All other experimental results were analyzed using unpaired two-tailed Student t test or ANOVA, as indicated in figure legends. Groups that were statistically compared shared a similar variance, as shown in the figures. P < 0.05 was considered statistically significant.

Disclosure of Potential Conflicts of Interest

Z. Zheng is the inventor of the patented AMP method and is an ArcherDX equity holder. D.M. Finkelstein is a consultant/advisory board member for Gilead and Janssen. P.L. Le has ownership interest (including patents) in ArcherDX and is a consultant/advisory board member for Roche and Chugai. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): K.J. Matiszek, A. Schulitz, J. Lee, A. Chan, U. Egeli, S. Gökgöz, F. Taiselden, S. Tolunay, J. St. Louis, P.E. Goss, A.J. Iafrate

Study supervision: G. Werutsky, L.W. Ellisen

Other (provided all clinical data and the majority of the biobank): P.E. Goss

Acknowledgments

This work was supported in part by the Avon Foundation Breast Cancer Crusade and the Tracey Davis Memorial Fund. We gratefully acknowledge international collaborators who provided matched primary/metastatic breast cancer specimens, from the Latin America Cooperative Oncology Group (LACOG) including Laura Voelcker, Carla Sampaio (Pontificia Universidade Catolica do Rio Grande do Sul), and the Breast Cancer Crusade and the Tracey Davis Memorial Fund. We are thankful to Lee Litman (Johns Hopkins University) for the generous gift of MCF7怎么做® cells. D.C. Sgroi was funded in part by a grant from the Breast Cancer Research Foundation.
The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received May 13, 2017; revised November 9, 2017; accepted December 11, 2017; published OnlineFirst December 14, 2017.

REFERENCES

Expressed Gene Fusions as Frequent Drivers of Poor Outcomes in Hormone Receptor–Positive Breast Cancer

Karina J. Matissek, Maristela L. Onozato, Sheng Sun, et al.

Cancer Discov 2018;8:336-353. Published OnlineFirst December 14, 2017.

Updated version
Access the most recent version of this article at:
doi:10.1158/2159-8290.CD-17-0535

Supplementary Material
Access the most recent supplemental material at:
http://cancerdiscovery.aacrjournals.org/content/suppl/2017/12/14/2159-8290.CD-17-0535.DC

Cited articles
This article cites 45 articles, 8 of which you can access for free at:
http://cancerdiscovery.aacrjournals.org/content/8/3/336.full#ref-list-1

Citing articles
This article has been cited by 6 HighWire-hosted articles. Access the articles at:
http://cancerdiscovery.aacrjournals.org/content/8/3/336.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/8/3/336.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.