June 2018 • Volume 8 • Number 6

RESEARCH BRIEF
Response to ERBB3-Directed Targeted Therapy in NRG1-Rearranged Cancers

Précis: Patients with NRG1-rearranged tumors may be more sensitive to therapies targeting ERBB3 than ERBB2, and the presence of NRG1 fusions in multiple tumor types supports a basket trial approach to evaluate ERBB3 inhibitors.

See commentary, p. 676

RESEARCH ARTICLES
Targeted Therapies for Targeted Populations: Anti-EGFR Treatment for EGFR-Amplified Gastroesophageal Adenocarcinoma

Précis: EGFR amplifications were identified in 5% of patients with gastroesophageal adenocarcinoma, and anti-EGFR therapy achieved responses in 4 of 7 patients with EGFR amplification, although various resistance mechanisms emerged.

See commentary, p. 679

Sequential ALK Inhibitors Can Select for Lorlatinib-Resistant Compound ALK Mutations in ALK-Positive Lung Cancer

Précis: The spectrum of ALK resistance mutations to the third-generation ALK inhibitor lorlatinib were identified by an in vitro mutagenesis screen and in clinical specimens from patients with ALK-positive lung cancer.
Genetic Mechanisms of Immune Evasion in Colorectal Cancer 730
Précis: Analysis of 1,211 colorectal tumors found that MSI-H tumors have a higher frequency of mutations associated with immunoediting and both MSI-H and non-hypermutated tumors have WNT activating mutations that promote immune exclusion.

Chimeric Antigen Receptor T Cell–Mediated Neurotoxicity in Nonhuman Primates 750
Précis: A nonhuman primate model of B cell–targeted CAR T-cell immunotherapy recapitulates and provides insight into human CAR T-cell–mediated neurotoxicity and cytokine release syndrome.

Identification of Pik3ca Mutation as a Genetic Driver of Prostate Cancer That Cooperates with Pten Loss to Accelerate Progression and Castration-Resistant Growth 764
Précis: Pik3ca mutations are sufficient to cause prostate tumorigenesis in mice and can cooperate with Pten loss to accelerate disease progression and resistance to androgen deprivation therapy.

AC icon indicates AuthorChoice
For more information please visit http://www.aacrjournals.org

ON THE COVER
Drilon and colleagues identified a patient with NRG1-rearranged invasive mucinous adenocarcinoma who achieved an exceptional response to an anti-ERBB3 monoclonal antibody, whereas ERBB2 inhibition did not achieve responses in four patients with NRG1-rearranged lung cancer, suggesting that ERBB3 inhibition may be more effective in this patient population. In vitro, NRG1-rearranged cell lines were sensitive to inhibition of either ERBB2 or ERBB3, but in vivo, ERBB3 inhibition produced durable tumor regression, whereas ERBB2 inhibition had less pronounced antitumor activity. Analysis of 26,469 tumors from The Cancer Genome Atlas and MSK-IMPACT revealed NRG1 rearrangements at low frequency in a variety of tumors, supporting a basket trial design for the investigation of ERBB3-targeted therapies in patients with NRG1-rearranged tumors. For details, please see the article by Drilon and colleagues on page 686.
CANCER DISCOVERY

8 (6)

Cancer Discov 2018;8:OF3-779.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://cancerdiscovery.aacrjournals.org/content/8/6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Subscriptions</td>
<td></td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/8/6. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>