RESEARCH ARTICLES

Efficacy of BGJ398, a Fibroblast Growth Factor Receptor 1-3 Inhibitor, in Patients with Previously Treated Advanced Urothelial Carcinoma with FGFR3 Alterations

Précis: The FGFR1-3 inhibitor BGJ398 achieved responses with an acceptable safety profile in an expansion cohort of 67 patients with metastatic FGFR3-altered urothelial carcinoma.

STK11/LKB1 Mutations and PD-1 Inhibitor Resistance in KRAS-Mutant Lung Adenocarcinoma

Précis: In patients with KRAS-mutant lung adenocarcinoma, co-occurring alterations in STK11 conferred primary resistance to PD-1 blockade, suggesting that genomic profiling may guide selection of patients likely to respond.

See commentary, p. 794
Precision Targeted Therapy with BLU-667 for RET-Driven Cancers 836
Précis: BLU-667 is a potent selective RET inhibitor with activity against multiple RET mutations and fusions, and it achieved clinical responses with limited toxicity in four patients with RET-driven tumors.
See commentary, p. 797

PTEN Deficiency and AMPK Activation Promote Nutrient Scavenging and Anabolism in Prostate Cancer Cells 866
Précis: AMPK-dependent macropinocytosis of necrotic cell debris enhances the growth and survival of PTEN-deficient prostate cancer cells
See commentary, p. 800

ON THE COVER
Skoulidis, Goldberg, Greenawalt, and colleagues linked STK11 mutations to PD-1 inhibitor resistance in KRAS-mutant lung cancer. Patients with lung cancer harboring co-occurring STK11 and KRAS alterations had a lower response rate to PD-1/PD-L1 blockade than patients with co-occurring KRAS and TP53 alterations or KRAS mutations alone. STK11 alterations were enriched in PD-L1-negative tumors with an intermediate to high tumor mutation burden. However, STK11 alterations were also associated with primary resistance to PD-1 blockade in patients with PD-L1-positive tumors. STK11 deletion induced de novo resistance to PD-1 inhibition in a mouse model of KRAS-mutant lung adenocarcinoma. These results demonstrate that STK11 alterations confer primary resistance to PD-1/PD-L1 blockade and suggest that genomic profiling may identify patients likely to benefit from PD-1 blockade. For details, please see the article by Skoulidis, Goldberg, Greenawalt, and colleagues on page 822.
<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/8/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-mail alerts</td>
<td>Sign up to receive free email-alerts related to this article or journal.</td>
</tr>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/8/7. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>