Cells with dysfunctional cell-cycle checkpoints continue to undergo cell division until their telomeres become critically short, at which point telomeres become deprotected and fuse and cells undergo cell death in a process known as replicative crisis. Individual cells that escape replicative crisis accumulate increasing levels of chromosomal instability and can potentially acquire properties of transformed cells, suggesting that cell death during replicative crisis is tumor-suppressive, but the underlying mechanisms of cell death in this process are unclear. Nassour and colleagues disrupted p53- and RB1-dependent cell cycle checkpoints in human fibroblasts and epithelial cells and observed that cell death during replicative crisis was associated with hallmarks of autophagy and not apoptosis. Moreover, knockdown of essential autophagy proteins allowed cells to continue proliferating and bypass crisis in association with reduced cell death. Autophagy-deficient cells that had bypassed replicative crisis developed high levels of telomere damage and chromosomal alterations, suggesting that autophagic cell death during replicative crisis prevents genomic instability. Telomere dysfunction-induced damage specifically induced autophagy, as it generated cytosolic DNA that activated the DNA-sensing cGAS–STING pathway, which was required for both replicative crisis and autophagic cell death. Although further work is needed to confirm whether bypass of replicative crisis in non-transformed cells caused by loss of autophagy drives genomic instability and tumorigenesis in vivo, this and other studies showing that autophagy can play tumor-suppressive roles in certain contexts suggest that patients receiving autophagy inhibitors as cancer therapies may have an increased risk of secondary malignancies.

Myc and KrasG12D exhibit distinct roles in the post-transcriptional regulation of immune checkpoints. Oncogenes promote tumorigenesis by driving tumor growth and transcriptionally regulating the expression of immune checkpoints to promote immune escape, but it is unclear whether oncogenes act post-transcriptionally to regulate immune checkpoint expression. To ascertain how oncogenes cooperate to control immune checkpoint expression, Xu, Poggio, and colleagues generated genetic mouse models of hepatocellular carcinoma with liver-targeted Myc overexpression (Myc52) and/or expression of KrasG12D. Only Myc52;KrasG12D mice developed aggressive, highly metastatic and inflamed tumors; KrasG12D mice developed tumors that were less inflamed and metastatic, and Myc52 mice failed to develop liver tumors. Myc52;KrasG12D tumors were found to be transcriptionally, but not translationally, similar to KrasG12D tumors, although there was no difference in global protein synthesis rates. Further, although both Myc52;KrasG12D and KrasG12D tumors exhibited increased expression of Cldn7 (the mouse ortholog of PD-L1), only Myc52;KrasG12D tumors exhibited upregulation of PD-L1 ribosome footprints and expression of PD-L1 protein. Ribosomes in KrasG12D tumors translate two upstream open reading frames (uORF) with uAUG and uCUG start sites, respectively, in the PD-L1 5′-UTR and do not translate the main PD-L1 ORF, suggesting that these uORFs prevent PD-L1 protein translation, while ribosomes engage the canonical AUG start site and synthesize PD-L1 in Myc52;KrasG12D tumors. Mutation of uAUG or uCUG resulted in increased luciferase reporter activity, and CRISPR/Cas9-mediated editing of uAUG or uCUG in KrasG12D tumor-derived cell lines resulted in increased PD-L1 protein levels in vitro and increased metastasis in vivo. Myc52;KrasG12D tumors exhibited increased phosphorylation of eIF2α, a component of the eIF2 translation initiation complex, that allows ribosomes to bypass the uORF translational barrier resulting in PD-L1 protein expression. Treating Myc52;KrasG12D tumors in vivo with eFT508, a new clinical compound that targets the phosphorylation of the major cap binding protein, eIF4E, decreased PD-L1 translation, increased immune activity, and decreased tumor burden. These findings characterize the post-transcriptional role of oncogenes in immunosurveillance and identify a potential immunotherapy strategy.

Major finding: Autophagic cell death during replicative crisis prevents further accumulation of genomic instability.

Mechanism: Telomere damage generates cytosolic DNA that activates the cGAS–STING pathway and stimulates autophagy.

Impact: Autophagy may be required to eliminate precancerous cells and prevent oncogenic transformation.

Major finding: MYC and KRASG12D exhibit distinct roles in the post-transcriptional regulation of immune checkpoints.

Concept: MYC drives eIF2-driven bypass of KRASG12D-mediated suppression of the translation of PD-L1.

Impact: Clinically targeting translational control may enhance the efficacy of immunotherapy.
MYC-Mediated Translation of PD-L1 Promotes Liver Cancer Immune Escape

| Updated version | Access the most recent version of this article at: doi:10.1158/2159-8290.CD-RW2019-011 |

E-mail alerts | Sign up to receive free email-alerts related to this article or journal. |
Reprints and Subscriptions | To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org. |
Permissions | To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/9/3/317.2. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site. |