Oral Mucosal Organoids as a Potential Platform for Personalized Cancer Therapy
Précis: Organoids derived from head and neck squamous cell carcinoma (HNSCC) and matching normal tissue allow for the in vitro characterization of the genetics, histology, and drug sensitivity of HNSCC.
See commentary, p. 828

Rational Targeting of Cooperating Layers of the Epigenome Yields Enhanced Therapeutic Efficacy against AML
Précis: Analysis of a long-term primary acute myeloid leukemia (AML) ex vivo culture platform shows that combined targeting of enhancers with an LSD1 inhibitor and promoters with 5-azacytidine shows greater efficacy than monotherapy, particularly in TET2-mutant AML.

Targeting Mitochondrial Structure Sensitizes Acute Myeloid Leukemia to Venetoclax Treatment
Précis: Depletion of mitochondrial proteins involved in maintenance of mitochondrial function and structure including the chaperonin CLPB is synthetically lethal with venetoclax in acute myeloid leukemia cells.
See commentary, p. 831
The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells

Précis: Inactivation of p53 and proapoptotic proteins promotes resistance to venetoclax in acute myeloid leukemia by inducing changes in mitochondrial homeostasis and cellular metabolism.

See commentary, p. 834

A Gain-of-Function p53-Mutant Oncogene Promotes Cell Fate Plasticity and Myeloid Leukemia through the Pluripotency Factor FOXH1

Mechanisms of Lymphoma Clearance Induced by High-Dose Alkylating Agents

Correction: AMG 176, a Selective MCL1 Inhibitor, Is Effective in Hematologic Cancer Models Alone and in Combination with Established Therapies

Correction: ER Translocation of the MAPK Pathway Drives Therapy Resistance in BRAF-Mutant Melanoma

For more information please visit http://www.aacrjournals.org

ON THE COVER
Chen, Glytsou, and colleagues performed a genome-wide CRISPR/Cas9 screen for genes whose inactivation would sensitize acute myeloid leukemia (AML) cells to venetoclax and identified regulators of mitochondrial organization and function, including the mitochondrial chaperonin CLPB. CLPB is elevated in AML and maintains mitochondrial cristae structure, whereas its loss promotes apoptosis by inducing cristae remodeling and mitochondrial stress responses. CLPB ablation synergized with venetoclax alone and in combination with azacitidine to inhibit AML growth. In a complementary study, Nechiporuk and colleagues performed a genome-wide CRISPR/Cas9 screen for genes whose inactivation confers venetoclax resistance in AML cells and identified members of the TP53–BAX apoptotic network. p53 and BAX expression were inversely correlated with venetoclax sensitivity in primary AML samples, and loss of p53 and BAX were associated with perturbed mitochondrial homeostasis and inhibition of a general mitochondrial stress response. Venetoclax-resistant TP53-mutant AML cells acquired a dependency on NTRK signaling for survival and were sensitive to TRK inhibitors. Together, these studies provide insights into biological mechanisms underlying responses to venetoclax in AML and suggest potential strategies to overcome venetoclax resistance. For details, please see the article by Chen, Glytsou, and colleagues on page 890 and the article by Nechiporuk and colleagues on page 910. Cover art by Yi Hu.
CANCER DISCOVERY

9 (7)

| Updated version | Access the most recent version of this article at: http://cancerdiscovery.aacrjournals.org/content/9/7 |

E-mail alerts	Sign up to receive free email-alerts related to this article or journal.
Reprints and Subscriptions	To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.
Permissions	To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/9/7. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.