The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells

Tamilla Nechiporuk 1,2, Stephen E. Kurtz 1,2, Olga Nikolova 2,3, Tingting Liu 1,2, Courtney L. Jones 1, Angelo D’Alessandro 5, Rachel Culp-Hill 3, Amanda d’Almeida 1,2, Sunil K. Joshi 1,2, Mara Rosenberg 1,2, Cristina E. Tognon 1,2,6, Alexey V. Danilov 1,2, Brian J. Druker 1,2,6, Bill H. Chang 2,7, Shannon K. McWeeney 2,8, and Jeffrey W. Tyner 1,2,9

ABSTRACT
To study mechanisms underlying resistance to the BCL2 inhibitor venetoclax in acute myeloid leukemia (AML), we used a genome-wide CRISPR/Cas9 screen to identify gene knockouts resulting in drug resistance. We validated TP53, BAX, and PMAIP1 as genes whose inactivation results in venetoclax resistance in AML cell lines. Resistance to venetoclax resulted from an inability to execute apoptosis driven by BAX loss, decreased expression of BCL2, and/or reliance on alternative BCL2 family members such as BCL2L1. The resistance was accompanied by changes in mitochondrial homeostasis and cellular metabolism. Evaluation of TP53 knockout cells for sensitivities to a panel of small-molecule inhibitors revealed a gain of sensitivity to TRK inhibitors. We relate these observations to patient drug responses and gene expression in the Beat AML dataset. Our results implicate TP53, the apoptotic network, and mitochondrial functionality as drivers of venetoclax response in AML and suggest strategies to overcome resistance.

SIGNIFICANCE: AML is challenging to treat due to its heterogeneity, and single-agent therapies have universally failed, prompting a need for innovative drug combinations. We used a genetic approach to identify genes whose inactivation contributes to drug resistance as a means of forming preferred drug combinations to improve AML treatment.

See related commentary by Savona and Rathmell, p. 831.

1 Division of Hematology and Medical Oncology, Oregon Health and Science University, Portland, Oregon. 2 Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon. 3 Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon. 4 Division of Hematology, University of Colorado Denver, Aurora, Colorado. 5 Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado. 6 Howard Hughes Medical Institute, Oregon Health and Science University, Portland, Oregon. 7 Department of Pediatrics, Oregon Health and Science University, Portland, Oregon. 8 Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon. 9 Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon.

Note: Supplementary data for this article are available at Cancer Discovery Online (http://cancerdiscovery.aacrjournals.org/).

Corresponding Author: Jeffrey W. Tyner, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Mailcode KR-HEM, Portland, Oregon 97239. Phone: 503-346-0603; Fax: 503-494-3688; E-mail: tynerj@ohsu.edu.
Cancer Discov 2019;9:910–25
doi: 10.1158/2159-8290.CD-19-0125
©2019 American Association for Cancer Research.
INTRODUCTION

Resisting cell death is a hallmark of cancer as well as an essential feature of acquired drug resistance (1–3). To maintain their growth and survival, cancer cells often modulate cell death mechanisms by overexpression of antiapoptotic BCL2 family members, including BCL2, BCL2L1, and MCL1. This overexpression aims to neutralize BH3 domains of the apoptotic activators BID, BIM, and PUMA, thus preventing liberation of the proapoptotic proteins BAX and BAK from inhibitory interactions with antiapoptotic BCL2 family proteins (4–6). Elevated levels of MCL1 protein are commonly observed in cancer and are associated with poor survival in myeloid hematologic malignancies (7–10). Aberrant prosurvival regulation can also be achieved by inactivation of p53 function, which controls many aspects of apoptosis (11, 12). These processes alter the balance of proapoptotic and antiapoptotic proteins, permitting cancer cells, otherwise primed for apoptosis, to survive and resist therapies.

The elucidation of BH3 protein family interactions involved in promoting or inhibiting apoptosis has enabled the development of small-molecule inhibitors targeting specific antiapoptotic family members leading to release of the proapoptotic proteins BAX and BAK, their oligomerization and mitochondrial outer membrane permeabilization, and ultimately execution of the irreversible apoptotic cascade (13–17). The latest generation of BH3 mimetics, venetoclax, selectively targets BCL2, thus overcoming the deficiencies and side effects of its predecessors, navitoclax and ABT-737, which targeted BCL2 and BCL2L1. Selective MCL1 inhibitors have also been developed and are in clinical development (18–20). Venetoclax has FDA approval for use in patients with chronic lymphocytic leukemia (CLL), and its efficacy has been evaluated for other hematologic malignancies; it has been recently approved in combination with a hypomethylating agent for acute myeloid leukemia (AML; refs. 21–25). Intrinsic or acquired resistance is a central concern with single-agent targeted therapies, with many instances now documenting favorable initial responses that give way to disease relapse resulting from loss of drug sensitivities (26).

For venetoclax, both acquired and intrinsic resistance is anticipated from initial clinical studies using venetoclax monotherapy on patients with relapsed/refractory AML, which have shown modest efficacy due to either intrinsic or acquired drug resistance (24). The efficacy of venetoclax in patients with AML is dependent on BCL2 expression levels, and resistance to venetoclax may result from overexpression of the antiapoptotic proteins MCL1 or BCL2L1 (21, 24). Similar mechanisms have been observed in lymphoma cell lines, as several studies have shown resistance to venetoclax developing primarily through alterations in levels of other antiapoptotic...
proteins (27, 28). AML cell lines rendered resistant to venetoclax through prolonged exposure develop a dependency on MCL1 or BCL2L1 (19, 29). In AML cells, the dependency on MCL1 for survival can be overcome by MAPK/GSK3 signaling via activation of p53, which when coupled with BCL2 inhibition enhances the antileukemic efficacy of venetoclax (30).

Drug combinations offer a strategy to overcome limitations in the durability and overall effectiveness of targeted agents resulting from intrinsic mechanisms of resistance. Understanding these mechanisms is essential for identifying drug targets that will form the basis for new combinatorial therapeutic strategies to circumvent drug resistance. To identify essential target genes and pathways contributing to venetoclax resistance in AML, we used a genome-wide CRISPR/Cas9 screen on an AML patient-derived cell line, MOLM-13. Our findings identify TP53, BAX, and PMAIP1 as key genes whose inactivation establishes venetoclax resistance, centering on regulation of the mitochondrial apoptotic network as a mechanism of controlling drug sensitivity. Cell lines with TP53 or BAX knockouts (KO) show perturbations in metabolic profile, energy production, and mitochondrial homeostasis. In addition, TP53 KO cells acquired sensitivity to TRK inhibitors, suggesting a new dependency on this survival pathway, indicating changes in transcriptional activity in the venetoclax-resistant setting may offer drug combinations to overcome resistance.

RESULTS

Genome-Wide Screen Reveals p53 Apoptosis Network Controlling Venetoclax Resistance

To understand possible mechanisms of venetoclax resistance in the setting of AML, we screened an AML cell line, MOLM-13, which harbors the most common genetic lesion observed in AML (FLT3-ITD), for loss-of-function genes conferring venetoclax resistance. We initially generated Cas9-expressing MOLM-13 cells as described (ref. 31; Fig. 1A) and confirmed Cas9 functionality (Fig. 1B). Systematic genetic perturbations on a genome-wide scale were introduced by infecting Cas9-expressing cells with lentiviruses carrying a CRISPR library consisting of an average of 5 single-guide RNAs (sgRNA) per gene for 18,010 genes, hereafter referred to as Y. Kosuke (31). After transduction, we further subjected cells to treatment selected cells with puromycin for 5 days to ensure stable expression without drug exposure. PCR-amplified libraries of barcodes representing unique sgRNA sequences obtained from DNA extracted from either control (DMSO) or drug-treated cells were subjected to deep sequencing and analyzed using a MAGeCK pipeline analysis (ref. 32; Fig. 1D; Supplementary Tables S1 and S2). Plots of the average log fold change for sgRNA counts per gene versus cumulative P values generated by robust rank aggregation analyses revealed a high enrichment of p53 and BAX in venetoclax-resistant populations as well as a significant enrichment for several other genes involved in the apoptosis pathway or mitochondrial homeostasis, such as PMAIP1 (NOXA), TFDPI, and BAK1 (BAK; Fig. 1E). These findings are concordant with results of a similar screen, described in a companion paper by Chen and colleagues in this issue. To confirm our results, we performed a parallel screen in MOLM-13 cells using a distinct genome-wide library, Brunello (33), which also identified TP53, BAX, and PMAIP1 among the top-enriched sgRNAs (Fig. 1F; Supplementary Tables S1 and S2). The distribution of concordance, defined as a statistically significant increase or decrease (P < 0.05) in the same direction among all sgRNAs for a given gene, showed higher average percent concordance in the Y. Kosuke library screen compared with the Brunello library screen (0.77 ± 0.07, n = 916 vs. 0.62 ± 0.004, n = 2310, unpaired two-tailed t test, P < 0.0001); therefore, we focused on the Y. Kosuke screen results for pathway analyses. Ranking genes with statistically significant enriched sgRNAs (P < 0.05) based on concordance as described above and a ≥ 3 log fold change compared with controls identified 234 genes (Supplementary Table S3). Functional enrichment analyses of these 234 candidates indicated an enrichment in genes involved in mitochondrial processes, such as apoptosis transcriptional regulation (TP53 and TFDPI; refs. 13 and 34) and apoptosis sensitization [PMAIP1 (NOXA); ref. 35], genes required for mitochondrial membrane pore formation (BAX, BAK, SLC25A6, and TMEM114; refs. 13, 34), and additional genes involved in apoptosis (proapoptotic BNIP3L; ref. 36; Supplementary Table S4). The top-enriched sgRNAs showed a high degree of concordance in fold change relative to controls (Fig. 1G; Supplementary Tables S1 and S2) and had a baseline of more than 100 normalized counts in control samples, precluding artificial inflation of fold changes in resistant cells (Fig. 1H).

Prioritization of Genome-Wide Screen Candidates

Our study used two independent sgRNA guide libraries, which provided a high degree of confidence with respect to the top hits identified. Analysis of genome-wide CRISPR screen knockouts is challenged by off-targeting, sgRNA guide efficiency, and other factors that can lead to library-specific artifacts and striking differences between libraries (31, 33). To prioritize candidates for validation, we developed a tier structure that incorporates three key factors: evidence (determined by the number of sgRNA guide hits per gene), concordance (indicated by the agreement across the set of guides for a given gene), and discovery (based on expanding effect size threshold) to rank sgRNA hits and enable a progression to pathway analysis for lower-scoring hits (Supplementary Methods). Using this prioritization scheme, the tier 1 hits (n = 149) revealed significant biological identity with the TP53 Regulation of cytochrome C release pathway (Reactome; corrected P < 0.001), which is concordant with our initial analysis.

Inactivation of Genes as Single Knockouts Confirms Resistance to Venetoclax and Validates the Screen

To validate the screen hits, we designed several individual sgRNAs to knock out TP53, BAX, PMAIP1, TFDPI, and several other top candidate genes along with nontargeting controls. Analyses of drug sensitivity at 14 days after transduction of MOLM-13 cells with individual sgRNAs revealed a loss of
TP53 Network Mediates Resistance to BCL2 Inhibition

Figure 1. Genome-wide CRISPR/Cas9 screen in AML cells identified TP53, BAX, and other apoptosis network genes conferring sensitivity to venetoclax. **A,** Schematic representation of lentiviral vectors described elsewhere in detail (31) and used for the delivery and functional assay of Cas9. Top, Cas9-expressing vector; Bsd, blasticidin selection gene; EF1a, intron-containing human elongation factor 1a promoter; u6, U6 promoter; PGK, PGK promoter. Scaff denotes sgRNA scaffold. **B,** Functional assay for Cas9 activity in MOLM-13 cells transduced with virus carrying an empty sgRNA cassette (top) or sgRNA targeting GFP (bottom), assessed by flow cytometry 5 days after transduction. Note the significant decrease in GFP signal in the presence of sgRNA targeting GFP. **C,** Infect Select Collect Days 0–14

Figure 1. Genome-wide CRISPR/Cas9 screen in AML cells identified TP53, BAX, and other apoptosis network genes conferring sensitivity to venetoclax. **A,** Schematic representation of lentiviral vectors described elsewhere in detail (31) and used for the delivery and functional assay of Cas9. Top, Cas9-expressing vector; Bsd, blasticidin selection gene; EF1a, intron-containing human elongation factor 1a promoter; u6, U6 promoter; PGK, PGK promoter. Scaff denotes sgRNA scaffold. **B,** Functional assay for Cas9 activity in MOLM-13 cells transduced with virus carrying an empty sgRNA cassette (top) or sgRNA targeting GFP (bottom), assessed by flow cytometry 5 days after transduction. Note the significant decrease in GFP signal in the presence of sgRNA targeting GFP. **C,** Schematic representation of genome-wide screen for drug resistance. The sgRNA library (31) was transduced into Cas9-expressing MOLM-13 cells, selected with puromycin for the integration of sgRNA-carrying virus for 5 days and DNA collected from cells exposed to venetoclax (1 μmol/L) or vehicle (DMSO) for various time points (days 0, 7, 14, and 21). sgRNA barcodes were PCR-amplified and subjected to deep sequencing to analyze for enrichment and/or dropout. **D,** Normalized counts of sgRNAs from collected DNA samples, median, upper, and lower quartiles are shown for representative replicate samples. **E, F,** Enrichment effect in Y. Kosuke (E) and Brunello (F) library screens for loss of sensitivity to venetoclax. Fold change and corresponding P values are plotted; genes representing significant hits in both libraries are highlighted in red. **G,** Enrichment extent plotted as fold change over control following venetoclax exposure (day 14) for the set of individual top hit sgRNAs per gene is shown (Y. Kosuke library). **H,** Box and whisker plots spanning min/max values of normalized counts for control (left boxes in each pair) and venetoclax treatment (right boxes in each pair) combined for all sgRNAs per gene. Top hits are shown.
venetoclax sensitivity (Fig. 2A). The top candidates, including TP53 and BAX, were also validated by single-guide inactivation in an additional cell line, MV4-11 (Fig. 2B and C), with many IC50 values significantly exceeding initial drug concentrations used for the sgRNA screen. Analyses of protein levels for the top candidates, BAX, TP53, and PMAIP1, demonstrated significant loss of protein upon sgRNA inactivation (Fig. 2D; Supplementary Fig. S1A and S1B). Although BAX is reported to be a p53 transcriptional target (reviewed in ref. 37), its levels remained unchanged when TP53 was inactivated, indicating that other transcriptional factors may regulate BAX levels in these cells (38). Levels of other p53 target gene products such as PMAIP1, PUMA, and BAK1 were decreased in TP53 KO cells (Supplementary Fig. S1A and S1C). At the same time, levels of antiapoptotic proteins BCL2 and MCL1 were reduced in all four tested TP53 knockout lines, inversely correlating with increased BCLXL expression (Fig. 2D; Supplementary Fig. S1C). Analysis of protein levels revealed increases in the ratios of BCLXL to BCL2 in TP53 KO cells (Supplementary Fig. S1D). Venetoclax directly binds BCL2; therefore, a decrease in BCL2 expression in TP53 KO cells may contribute to the loss of sensitivity. The inverse correlation of low BCL2/high BCLXL expression with null TP53 status is similarly observed in pediatric acute lymphoblastic leukemia (39). In a large AML patient cohort (Beat AML; ref. 40), BCL2 expression positively correlated with TP53 expression, whereas both BCLXL and MCL1 had inverse correlations (Fig. 2E). Increased levels of BCLXL in TP53 KO cells correlate with sensitivity to a BCL2/BCLXL inhibitor (AZD-4320; Fig. 2F). Because both MOLM-13 and MV4-11 cell lines carry an FLT-ITD mutation, we introduced loss-of-function mutations in TP53, BAX, and PMAIP1 into OCI-AML2, an FLT3 wild-type (WT) cell line, and observed similarly diminished sensitivities to venetoclax (Supplementary Fig. S1E and S1F).

AML Patient Samples with Mutant TP53 Status or Low Expression Levels of TP53 and BAX Have Diminished Sensitivity to Venetoclax Ex Vivo

To assess whether the top candidates from the screen have a direct relevance to gene perturbation in patients with AML, we analyzed the correlation of venetoclax drug sensitivity with gene-expression levels and mutational status using the Beat AML patient sample dataset (40). Our analyses indicated that 16 patient samples harboring deleterious TP53 mutations showed a trend toward reduced venetoclax sensitivity (measured as increases in AUC in a nonlinear modeling of drug response curves) compared with 282 AML patient samples with WT TP53 (Mann–Whitney t test, P < 0.04; Fig. 3A). Furthermore, separation of TP53 expression levels into high and low quartiles across the total TP53 WT cohort showed high quartile samples were more sensitive to venetoclax than low quartile samples (Fig. 3B). Regardless of TP53 mutational status, both TP53 and BAX expression levels were inversely correlated with venetoclax sensitivity (high AUC), underscoring the relevance of our CRISPR-derived loss-of-function candidates to patient-level responses ex vivo (Fig. 3C). As expected, BCL2 levels showed an inverse correlation with venetoclax sensitivity, whereas BCLXL expression directly correlated with venetoclax sensitivity (Fig. 3C).

Inactivation of TP53 and BAX Diminishes the Apoptotic Response to Venetoclax

To characterize venetoclax sensitivity in MOLM-13 cells with KOs for TP53, BAX, or PMAIP1, we evaluated an early marker of apoptosis by measuring the percentage of Annexin–positive cells in response to venetoclax treatment (100 nmol/L) (41). Cells with KOs for TP53, BAX, or PMAIP1 showed a significant decrease in the number of cells undergoing apoptosis (Fig. 4A and B). This was accompanied by sustained phosphorylation of MAPK1/3 (ERK1/2) during venetoclax treatment and increase in total levels of AKT and MAPK1/3 in cells with inactivation of TP53 and BAX (Fig. 4C).

Resistance to Venetoclax Coincides with Protection from Mitochondrial Stress and Increases in Oxidative Phosphorylation

The top hits from our CRISPR screen pointed toward perturbations in mitochondrial regulators and effectors of the apoptotic program. p53, BAX, PMAIP1, TFDP1, and BAK function in a proapoptotic manner: p53 acts as a sensor of cellular stress and transcriptional regulator of several proapoptotic genes; TFDP1 activates and translocates PMAIP1 into the mitochondria; PMAIP1 promotes activation of the apoptotic program; and BAX/BAK function as its effectors. In this manner, we observed that inactivation of TP53 led to alterations in the expression of antiapoptotic BCL2 family members and many TP53 transcriptional targets that affect mitochondrial homeostasis and cellular metabolism (Fig. 2D; Supplementary Fig. S1). TP53 inactivation also altered response to a variety of stress stimuli and rendered cells resistant to many other pharmacologic agents. These changes prompted us to investigate the impact of overall response to mitochondrial stress in cells briefly exposed to venetoclax (Fig. 5A–D). Cells with inactivation of p53 and BAX were less likely to undergo mitophagy in response to the mitochondrial uncoupler carbonyl cyanide m-chlorophenyl hydrazine (CCCP), regardless of venetoclax treatment, with more pronounced protection observed in TP53 mutants, suggesting overall changes in mitochondrial homeostasis (Fig. 5A and B). Additionally, TP53- and BAX-mutant cells were less likely to lose mitochondrial membrane potential in response to CCCP alone, with venetoclax potentiating the CCCP uncoupling action (Fig. 5C and D).

Venetoclax inhibits BCL2 by mimicking the BH3 binding of apoptotic sensitizers/activators. Both venetoclax and chemical inhibition of BCL2 influence energy production by decreasing oxidative phosphorylation in the mitochondria of leukemia stem cells (42) and can affect various metabolic activities in the cells, including amino acid catabolism (43). In addition, we observed reduced levels of PUMA in TP53 KO cells (Supplementary Fig. S1C), recently identified as a p53-induced metabolic switch (44). Because p53 regulates many genes whose products determine the balance of reactive oxygen species (ROS) production in response to cellular stress (45–47), we evaluated whether oxidative phosphorylation was perturbed in cells inactivated for TP53 by measuring rates of oxygen consumption and electron transport across the mitochondrial membrane. Both outputs were enhanced in mutant cells (Fig. 5E and F), accompanied by a moderate...
Figure 2. A. Confirmation of genes conferring venetoclax resistance in MOLM-13 and MV4-11 cells and correlations with changes in apoptotic gene transcription in patients with AML. MOLM-13 (A) or MV4-11 (B) cells were transduced with lentiviruses carrying single sgRNA/Cas9 constructs targeting TP53, BAX, PMAIP1, FAU, or control (nontargeting; NT_g). Ten days after transduction, venetoclax sensitivity was measured in triplicate by colorimetric MTS assay using a 7-point concentration range (10 nmol/L to 10 μmol/L). Percentages of viable cells, after normalization to untreated controls, were fit using nonlinear regression analyses; mean and standard errors are shown. MOLM-13P, parental MOLM-13 cells; MV4-11P, parental MV4-11 cells. C, Histogram (log scale) summarizing IC50 estimates from triplicate measurements for venetoclax sensitivity in parental MOLM-13 (black shaded), parental MV4-11 cells (gray shaded), or cells transduced with indicated sgRNA/Cas9 viruses. D, Western blot analyses of proteins extracted from MOLM-13 cells, transduced with indicated sgRNA/Cas9 viruses, and identified with antisera to BAX, BCL2, BCLXL, MCL1, and GAPDH. Note that for TP53, four sgRNAs producing distinct knockout alleles were used to confirm changes in expression levels of BCL2, BCLXL, and MCL1. sgRNA targeting KMT2C was used as an additional unrelated sgRNA control. E, Correlation of expression of TP53 and selected genes in an AML patient sample cohort (n = 246; ref. 40). k, slopes generated by linear regression; r, Spearman coefficient; *, P < 0.05; ****, P < 0.0001. F, Sensitivity profiles of venetoclax (left) and AZD-4320 (right) on MOLM-13 cells transduced with lentiviruses carrying single sgRNA/Cas9 constructs targeting TP53, BAX, PMAIP1, and NT (nontargeting) control, measured as in A using a 7-point concentration range (8 nmol/L to 10 μmol/L).

increase in cellular ROS (Fig. 5G), as oxidative phosphorylation is a major cellular source of ROS production (48). Interestingly, both TP53 and BAX KO cells were still susceptible to cell death by elesclomol, a drug that induces cellular death through an increase in cellular oxidation (49), suggesting that apoptosis can still be triggered in venetoclax-resistant cells through disruption of mitochondrial homeostasis (Fig. 5H). These results suggest an inhibition of a general mitochondrial stress response coupled with increased cellular respiration.
Perturbations in the Metabolic Profile of Venetoclax-Resistant Cells

Unlike the Warburg effect where rapidly proliferating cancer cells in glucose-rich conditions switch to less efficient aerobic glycolysis using the pentose phosphate shunt (48), increased oxygen consumption in TP53 KO cells suggests increased energy production via anaerobic glycolysis in venetoclax-resistant cells. Accordingly, we performed a global metabolomics analysis of MOLM-13 cells in with inactivation of TP53, BAX, and nontargeting controls. Unexpectedly, we observed a significant decrease in major glycolysis intermediates, such as D-glucose and D-glucose-6-phosphate; however, levels of pyruvate, the final metabolite entering into the tricarboxylic acid (TCA) cycle, remained unperturbed (Fig. 6A and B; Supplementary Fig. S2; Supplementary Table S5). We also observed a decrease in levels of 6-phospho-D-gluconate, but not in subsequent intermediates in the pentose phosphate pathway (Supplementary Fig. S2; Supplementary Table S5). Additionally, a decrease in amino acid levels and urea cycle intermediates highlighted the most significantly affected pathways (Fig. 6A–D) in both BAX- and TP53-mutant cells in comparison with control cells. These reductions were accompanied by increases in nucleotide synthesis, suggesting the utilization of more glucose and amino acids for the purpose of nucleotide synthesis and cellular proliferation (Fig. 6C and D; Supplementary Table S5). We also performed parallel metabolomic studies on TP53-mutant and WT patient samples (Supplementary Fig. S3A–S3C; Supplementary Table S5) and found concordance for decreases in glucose and pyruvate levels, amino acids, and urea cycle intermediates (Supplementary Fig. S3A, 3B, 3D, and 3E), offering validation of the altered metabolic states observed in the cell line models (Supplementary Fig. S3). These results, together with the diminished sensitivity to venetoclax and perturbations in mitochondrial responses, illustrate the significance of our screen hits as depicted in Fig. 6E. From the transcriptional
TP53 Network Mediates Resistance to BCL2 Inhibition

To evaluate whether the mitochondrial and metabolic changes led to alterations in additional signaling pathways, we evaluated drug sensitivities in MOLM-13 and MV4-11 cells with TP53 and BAX KOs relative to parental and nontargeting control cells using a panel of small-molecule inhibitors that target a variety of distinct signaling pathways activated in cancers. We observed many commonly altered drug responses among venetoclax-resistant cell lines, including a core of drug responses that were common to both modified MOLM-13 and MV4-11 cells (Fig. 7A; Supplementary Table S6). In addition to loss of venetoclax sensitivities, tyrosine kinase inhibitor sensitivities to the AKT/P38 pathway (GDC-0941, PI-103), as well as YM-155, an inhibitor of survivin, were decreased (Fig. 7A; Supplementary Table S6). Although the BAX KO showed a similar sensitivity to the MCL1 inhibitor AZD5991 relative to control cells, AZD5991 sensitivity was diminished in TP53 KO MOLM-13 cells, indicating that these cells may not depend on MCL1 for survival. The MCL1 dependency further decreased in prolonged TP53 KO cultures, possibly due to compensatory mechanisms of survival. Except for venetoclax, few, if any, inhibitors showed concordant changes between BAX-inactivated MV4-11 and MOLM-13 cells (Supplementary Table S6). Additional changes for cells with TP53 inactivation included the loss of sensitivity to all six tested FLT3 inhibitors (crenolanib, sorafenib, sunitinib, quizartinib, midostaurin, and gilteritinib; Fig. 7B; Supplementary Fig. S4A). Cells with TP53 KO showed sustained gain of sensitivity to several NTRK/ALK/ROS1 inhibitors, namely, entrectinib (50), crizotinib (51, 52), GW-2580 (53), and AZD1480 (ref. 54; Fig. 7A, C and D; Supplementary Fig. S4B; Supplementary Table S6). Neurotropin receptors (NTRK1-2/3, also known as TRKA/B/C) are well documented to play a role in neuronal development. NTRK receptors bind neurotrophin ligands and are single transmembrane catalytic receptors with intracellular tyrosine kinase activity. NTRK receptors have recently gained attention for their oncogenic role in a variety of cancer types, occurring as a component of fusion genes (55-58). NTRK receptor activation is coupled to RAS/RAF, PI3K, or PLCγ signaling pathways to promote survival and proliferation (58, 59). Although some TRK inhibitors have additional targets beyond NTRKs, such as ALK and ROS1, additional testing with a more selective TRK inhibitor, larotrectinib, also revealed a profound gain of sensitivity, indicating new dependences on the NTRK pathway for cell survival (Fig. 7C and D). To test whether NTRK transcripts were upregulated in TP53 knockout cells, we evaluated mRNA expression of NTRK1, NTRK2, and NTRK3 in MOLM-13 and MV4-11 cells with and without TP53 deletion. Although NTRK1 and NTRK2 were expressed at lower levels in KO cells, NTRK3 RNA was highly expressed in TP53 KO cells, indicating a transcriptional component of NTRK3 upregulation (Fig. 7E). NTRK1 was expressed at a lower level, albeit higher, in control cells, explaining sensitivity to entrectinib, whereas in TP53 KO cells the mRNA expression switches to NTRK3. Analyses of TRK protein levels revealed increases in overall and phosphorylated levels of TRK proteins in the p53 loss-of-function setting, and we observed significant

Alteration of Drug Sensitivities in TP53 and BAX KO Cells

machinery initiated by p53 in response to cellular stress to various sensitizers such as PMAIP1 and TFDPI to downstream mitochondrial pore effectors such as BAX, BAK, SLC25A6, and TMEM14A, our hits demonstrate the central involvement of mitochondria in conferring venetoclax sensitivity. Resistance may result from alterations in any of these components, for example, TP53 mutation affecting BCL2 and BCL2L1 expression (Fig. 6F) or BAX loss of function affecting mitochondrial outer membrane pore formation (Fig. 6G).
Figure 5. Cells with TP53 and BAX inactivation are resistant to mitochondrial stress induced by venetoclax and mitochondrial uncouplers. A, Flow cytometry analyses of MOLM-13 nontargeting and MOLM-13 TP53 KO cells for mitophagy with and without initial 2-hour stimulation with 100 mmol/L venetoclax and/or CCCP. Ten thousand cells were analyzed. Box drawn around doubly stained brighter cells with mitophagy dye is a result of acidification of the mitochondrion dye in lysosomes after fusion with damaged mitochondria. B, Histogram of mitophagy experiments (n = 3). Statistical significance determined by ANOVA with Tukey post-test. Note that the number of mitochondria fused to lysosomes is significantly less in MOLM-13 cells with TP53 knockout (TP53_g) and BAX (BAX_g) relative to control parental and nontargeting (NT_g) cells in the presence of uncoupler CCCP with and without venetoclax (VEN). *, P < 0.05; **, P = 0.01; ***, P < 0.001; ns, not significant. C, Flow cytometry analyses of mitochondrial depolarization. Percentage of cells with depolarized mitochondria in response to mitochondrial uncoupler CCCP is shown (boxed region; green fluorescent cells representing monomer form of cationic carbocyanine dye JC-1 in depolarized cells). Red fluorescent cells represent polymeric form of JC-1 in hyperpolarized cells. Note protection with depolarized mitochondria in response to mitochondrial uncoupler CCCP is shown (boxed region; green fluorescent cells representing monomer form of cationic carbocyanine dye JC-1 in depolarized cells). Red fluorescent cells represent polymeric form of JC-1 in hyperpolarized cells. Note protection against depolarization in TP53 and BAX KO cells. D, Histogram of experiments shown in C (n = 3) with 10,000 cells analyzed per sample. Statistical significance determined by ANOVA with Tukey post-test. *, P < 0.05; **, P = 0.01; ***, P < 0.001; ns, not significant. E, F, Analyses of oxygen consumption rate (OCR) and extracellular acidification rates (ECAR) using Seahorse assay (n = 3). G, Measurement of ROS using 2',7'-dichlorofluorescin diacetate (DCFDA, Abcam) substrate as an indicator of oxidation inside the cell detected by conversion to fluorescent DCF compound. Note higher rate of ROS in TP53 and BAX KO cells (n = 6). H, Cell viability assay in response to elesclomol.

decreases in phosphorylation of TRK and downstream MAPK signaling in response to treatment with entrectinib in TP53 KO MOLM-13 cells, but not in control or parental cells (Fig. 7F). Treatment of TP53 KO cells with entrectinib resulted in G1 cell-cycle blockade (Supplementary Fig. S5A and SSB), and treatment of these cells with entrectinib and venetoclax together was effective in both parental and TP53 KO cell lines but not synergistic relative to each single agent (Supplementary Fig. S5C). Analysis of cell lysates obtained from AML patient samples revealed a marked increase in TRK protein with detectable levels of phosphorylated pan-TRK and TRKC in TP53-mutant versus undetectable levels in WT cases (Fig. 7G). Ex vivo analysis of leukemic blasts from these patients with AML showed increased sensitivity to entrectinib in those samples harboring TP53 mutations (Supplementary Fig. S6A). A preliminary patient-derived xenograft
TP53 Network Mediates Resistance to BCL2 Inhibition

Figure 6. Metabolic changes in TP53 and BAX KO cells are indicative of increased cell proliferation. A and B, Global metabolomics profile of MOLM-13 TP53 (A) and BAX KO (B) cells. Metabolomic analysis was performed on samples in quadruplicate. Top 50 changed metabolites are shown. C and D, Pathway analysis of metabolites with differential abundance dot plot for MOLM-13 TP53 (C) and BAX KO (D) cells. Red to yellow color gradient indicates higher to lower statistical significance; circle size is proportional to the percentage of affected metabolites within the pathway. E, Summary of genes identified by the CRISPR/Cas9 screen affecting mitochondrial homeostasis, energy production, apoptosis, and venetoclax response. Star symbol indicates identified genes: TP53 (p53), TFDP1 (DP-1), NOXA (PMAIP1), BAX/BAK, TME41,4A, SLC25A6 (ANT3). Mechanisms of venetoclax resistance in cells with inactivation of TP53 (F) or BAX (G). Inactivation of TP53 leads to perturbation in the expression of prosurvival proteins, including BCL2, the primary venetoclax target. Inactivation of BAX leads to inability to build effective mitochondrial outer membrane permeabilization (MOMP) during apoptosis, induced by venetoclax.
study using two independent TP53-mutant samples showed a response to entrectinib treatment as detected by reduced spleen weight and disease burden relative to vehicle control (Supplementary Fig. S6B).

Together, these data have identified a mechanism of venetoclax resistance in AML, namely, the p53 apoptosis machinery, and demonstrated an approach to identify and validate candidate genes involved in drug resistance. In addition, our data suggest a dependency on new survival pathways (e.g., NTRK) in TP53-mutant cells and patients. Cells resistant to venetoclax exhibited perturbations in mitochondrial homeostasis, were abnormally protective in responses to various mitochondrial stressors, and exhibited significant metabolic differences, indicative of high proliferation rates, energy production, and DNA synthesis. These metabolic differences were echoed in AML patient samples with TP53 mutations.

Figure 7. Cells with loss-of-function alleles for TP53 or BAX have altered sensitivities to small-molecule inhibitors of various signaling pathways. A, MOLM-13 and MV4-11 cells, transduced with indicated sgRNAs/Cas9 viruses, were screened with a panel of inhibitors targeting various molecular pathways and assessed using the drug-screening method described in Fig. 2A. Fold changes in IC50 values (log10 scale) for those inhibitors concordant across both cell lines relative to nontargeting controls are shown. B, Analyses of FLT3 inhibitor sensitivities, in MOLM-13 and MV4-11 parental and KO cells, as indicated. Drug sensitivity was measured as described in Fig. 2A, with IC50 estimated from triplicates. C, Histogram of sensitivities [IC50 values] to a series of NTRK inhibitors in MOLM-13 cells, transduced with indicated sgRNAs/Cas9 viruses. D, Drug sensitivity to NTRK inhibitors entrectinib (top) and larotrectinib (bottom) as measured in Fig. 2A and F, in MOLM-13 cells transduced with indicated sgRNAs/Cas9 viruses. E, Expression levels of NTRK1, 2 and 3 mRNA using qRT-PCR analysis with RNAs isolated from MOLM-13 and MV4-11 cells, transduced with indicated sgRNAs/Cas9 viruses. Expression values were normalized to 36B4 gene-expression levels. Statistical significance was determined by ANOVA with Tukey post-test (**, P < 0.01; ***). F, Western blot analyses of proteins extracted from MOLM-13 parental and MOLM-13 transduced with TP53 sgRNA/Cas9 viruses and treated overnight with venetoclax (Ven; 100 nmol/L), entrectinib (Entr; 100 nmol/L), or vehicle (DMSO) and identified with antisera to pan-NTRK, phosphorylated ERK1/2 (Thr202/Tyr204), ERK1/2, phosphorylated AKT (Thr308), AKT, and GAPDH. G, Western blot analyses of proteins from AML patient samples with known TP53-mutant (TP53mut) or WT (TP53WT) status. Samples 17-00248 and 15-00309 have FLT3-ITD mutations; sample 17-00300 has a FLT3-missense mutation.
TP53 Network Mediates Resistance to BCL2 Inhibition

DISCUSSION

Venetoclax therapy for CLL has produced durable responses in a majority of patients (79%), with complete response in 20% of patients (60). Venetoclax has shown limited success in AML clinical trials as a single agent due to drug resistance in the majority of patients (24). Both of these clinical results are mirrored in venetoclax sensitivity observed
ex vivo
in patient samples assayed in the Beat AML cohort (40), where we observed greater activity of venetoclax on CLL (141 patients) than on AML (289 patients) specimens, with a median IC_{50} for AML significantly higher than that for CLL (1.4 μmol/L vs. 0.1 μmol/L, respectively; Mann–Whitney P < 0.001). The efficacy of venetoclax in newly diagnosed patients with AML, when administered in combination with azacitidine, has been more robust, although the TP53-mutant subset exhibited the worst response rate of any subset of patients reported in the study (25, 61), and this combination, as well as other venetoclax combinations, is likely to see broader use in AML and in CLL, prompting a need to better understand possible mechanisms of resistance. Our findings identify genes affecting control and execution of apoptosis in mitochondria (TP53, BAX, and PMAIP1); their inactivation individually establishes venetoclax resistance in AML cell lines. These results correlate with a recent study reporting activation of p53 through inhibition of MDM2 overcomes venetoclax resistance in AML cell lines (30). The mechanism of venetoclax action is concentrated on the mitochondria, a center of energy production through cellular respiration as well as initiation of apoptosis; its target, BCL2, functions in both cell survival and the oxidative phosphorylation process. In many ways, homeostasis of mitochondria and cell survival in apoptosis are tightly linked. Attesting to this point, venetoclax-resistant cells show both: likely resistance through changes in expression of prosurvival and proapoptotic proteins and perturbation in mitochondrial stress sensitivities.

Loss of p53 Affects Sensitivity to Other Signaling Pathway Inhibitors

Loss of p53 affected drug sensitivities to a wide range of small molecules, including FLT3 inhibitors. Many tyrosine kinase inhibitors have multiple targets, making it difficult to dissect sensitivity change unless a group of related inhibitors is affected. For example, a previous study of patients with relapsed/refractory AML with newly acquired crenolanib resistance identified TP53 mutations associated with resistance (62). Our results expand on that finding and include loss of sensitivity changes for many FLT3 inhibitors, an observation that is likely due to disruption of the normal apoptotic response in TP53-mutant cells. Additionally, we observed a new dependency on the NTRK pathway, which was confirmed by a similar increase in sensitivity to several inhibitors, either affecting NTRK/ALK/ROS1 signaling such as entrectinib, or the NTRK-selective inhibitor larotrectinib. TP53 mutations in AML are typically rare (<8% of all cases); however, a dysfunctional WT TP53 is much more common and requires functional assessment of TP53. In general, TP53 mutations confer poor prognosis and reduced sensitivity to a variety of small molecules, and frequently associate with relapsed/refractory AML cases (62).

Our future studies will focus on assessing NTRK inhibitor sensitivity in TP53-mutant AML patient xenografts. The detection of the TRK receptors on immature leukemic cell lines demonstrated that NTRK1 expression and activation are not restricted to the nervous system, but are also an important element in early hematopoiesis (63). TRK receptors, which promote the proliferation and survival of erythroblasts, dendritic cells, lymphocytes, monocytes, and macrophages (64), have also been detected in human bone marrow cells (65). TRK expression occurs in myeloid leukemia cell lines and in primary leukemic cells from patients with AML (66). Subsequent studies have shown that activation of TRK receptors in hematologic malignancies could result from chromosomal rearrangements (67), point mutations (68), truncations (69), and transcriptional changes (70). Although the prevalence of NTRK-mediated cancer is <1%, fusions involving NTRK3 were observed in various hematologic malignancies including AML (67). The efficacy of TRK inhibitors has been demonstrated in NTRK fusion–positive human leukemia cell lines and patient-derived xenograft studies, highlighting the potential clinical utility of these inhibitors for a subset of patients with leukemia (71, 72).

In our study, sensitivity to TRK inhibitors correlated with an increase in expression of NTRK3 and a concomitant decrease in NTRK1 in TP53 KO cells at the RNA and protein levels, indicating a transcriptional regulation. We also observed increased TRK protein levels in TP53-mutant patient samples. Among genes that regulate NTRK expression, RUNX family proteins bind NTRK loci (73) and have regulatory roles in both hematopoietic development and cancer (74). RUNX1 (AML1), a frequently mutated gene in AML, is often disrupted by translocation (75). RUNX1 isoforms can either enhance or repress gene expression in AML cell lines (76) with isoform RUNX1A having a repressor function due to the absence of its C-terminal transactivation domain. AML1 expression is decreased in both TP53-mutant patient samples and TP53 KO cell lines (Supplementary Fig. S6C and S6D), suggesting a potential mechanism whereby the interplay between various RUNX isoforms may regulate NTRK expression levels. In mice, p53 binds to the distal Runx1 promoter, leading to AML1 upregulation and lymphoma development (77). Future studies will examine whether NTRK loci occupancy with various RUNX1 isoforms leads to upregulation of specific NTRKs in TP53-mutant cells.

Genome-Wide Screen Identified Genes Controlling Proapoptotic Responses and Mitochondria Functions

Our screen identified genes whose inactivation confers venetoclax resistance. The most significant hits have a similar mode of action in apoptosis, namely, a strong proapoptotic activity. These included p53, a transcription factor with both activating and repressing functions controlling many aspects of cellular responses, including genotoxic stress pertinent to apoptotic signaling, and several p53 transcriptional targets, BAX, BAK1/BAK, and PMAIP1 (37, 78, 79). We found changes in the gene expression of several p53-regulated genes altered in our TP53 KO MOLM-13 cells, including proapoptotic PMAIP1, BAK1, and PUMA, without notable changes to BAX expression. BAX and BAK are critical for both mitochondrial outer membrane permeabilization (MOMP) in apoptosis and mitochondrial permeability transition pore (MPTP) formation. PMAIP1 senses apoptotic signaling and inhibits MCL1. TFDP1, together with E2F1, activates and translocates PMAIP1 into mitochondria.
toward suppressing oxidative phosphorylation and glycolysis–
tion of TIGAR expression (45), which degrades fructose-2,6-bi-
is known to negatively control glycolysis through the induc-
tional impact on the observed metabolic changes, because it
(84). It is possible that p53 inactivation also has a transcrip-
tional effect (48). This phenomenon is directed toward utilization of
sensitizing genes in this companion study uncovered impacts
on the loss of function of genes conferring venetoclax resistance,
Although some hits identified in the screen are not represented
eraging an independent patient data resource to the screen.

correlating with decreased levels of PUMA in TP53 KO cells
and the observed metabolic changes (44). Several other changes
in metabolic profile, namely increases or decreases in several
amino acids (variable between TP53- and BAX-mutant cells)
and urea cycle intermediates (common to both TP53- and BAX-
mutant cells), suggest the presence of other catabolic shunts to
provide carbon sources for amino acids necessary for new cell
production. Metabolic perturbations similar to those observed
in TP53 KO cells were found in our primary AML patient sam-

Metabolic Changes in Venetoclax-Resistant Cells Likely Reflect an Increased Proliferation Rate in TP53 and BAX KO Cells with Defective Apoptosis

Metabolic profiling of our mutant cells further indicated changes in energy utilization. Perturbations in the metabo-
list of cancer cells have been long recognized; for example,
some cancer cells rely on glycolysis and pentose phosphate
pathways versus cellular respiration, known as the Warburg
effect (48). This phenomenon is directed toward utilization of
carbon sources for nucleotides, fatty acid and protein synthesis
required for cellular proliferation. Although MOLM-13 cells
are leukemia-derived with a cancer metabolism, inactivation
of p53 and BAX further exacerbated metabolic changes: Increased
Cellular proliferation led to a diversion of resources into pro-
duction of nucleotides, fatty acids, and proteins required for
membrane production. Curiously, this was accompanied by
increased cellular respiration/increase in ROS production rela-
tive to parental cells, suggesting that mitochondria are over-
compensating for the glycolysis intermediates shunting into
the pentose phosphate pathway. Similar metabolic changes,
accompanied by increased oxidative phosphorylation as a result
of p53 inactivation, were previously observed in other tissues
(84). It is possible that p53 inactivation also has a transcrip-
tional impact on the observed metabolic changes, because it
is known to negatively control glycolysis through the induc-
tion of TIGAR expression (45), which degrades fructose-2,6-bi-
sphosphate and opposes the Warburg effect. Similarly, the
TP53–PUMA axis has been implicated in metabolic switching
toward suppressing oxidative phosphorylation and glycolysis

Clinically Relevant Hits Are Identified within the Beat AML Dataset

Identification of a significant collection of apoptosis and
mitochondria homeostasis controlling genes in our genome-
wide screen for venetoclax resistance validated our top hit find-
ings. However, although they provide mechanistic insight, some
validated hits do not correlate with available patient sample
data. For example, we did not find a correlation between low
PMAIP1 expression and low venetoclax sensitivity in our AML
patient cohort, nor were mutations in PMAIP1 associated with
loss of venetoclax sensitivity; underlying the importance of lev-
eraging an independent patient data resource to the screen.

Recent clinical trial success with the combination of vene-
toclax and a DNMTi (25) identified lower response rates in
patients with TP53 mutations than in the overall cohort (47% vs.
∼70% overall), aligning with our findings here. Indeed, patients
in the TP53 mutations subset exhibited the worst response rate
of any subset of patients reported in the study with all other
molecular/clinical groups in the study exhibiting 60% to 91%
complete response/complete response with incomplete blood
count recovery (CR/CRi) rate (including the poor cytogenetic risk group). Further, the TP53-mutant patient group had the lowest odds ratio for CR/CRi response and was the only variable that significantly correlated with worse response. A longer study may elucidate whether those TP53-mutant patients receiving the combination treatment will relapse at a higher rate, possibly with a clone that has higher allele frequency TP53 mutation.

METHODS

A complete Methods section is provided in Supplementary Material.

Cell Lines

Human MOLM-13 cells were obtained from the Sanger Institute Cancer Cell Line Panel. Human MV4-11, OCI-AML2, and THP-1 were obtained from ATCC. Authentication was performed on all cell lines used in this study at the Oregon Health and Science University (OHSU) DNA Services Core facility. All cell lines were tested for Mycoplasma on a monthly schedule.

CRISPR/Cas9 Screen

Loss-of-function screens were performed using two human genome-wide sgRNA libraries—Y. Kosuke library (31) and Brunello library (33)—both purchased form Addgene (#73179 and #67989, respectively).

Biostatistical Analysis

Pipeline for executing analyses of CRISPR library sequences was performed using MAGeCK analyses (32).

Ex Vivo Functional Screen

Small-molecule inhibitors, purchased from LC Laboratories Inc. and Selleck Chemicals, were reconstituted in DMSO and stored at −80°C.

Xenograft Generation

Animal studies were conducted with approval from the OHSU Institutional Animal Care and Use Committee. Patient samples were injected into cohorts of NSGS mice and allowed to engraft until the peripheral blood showed approximately 1% human CD33 chimerism.

Metabolomic Analysis

Two million MOLM-13 and MV4-11 cells were flash-frozen as cell pellet and metabolomics analyses were performed via ultra-high-pressure liquid chromatography–mass spectrometry (UHPLC-MS; Vanquish and Q Exactive, Thermo Fisher) as previously reported (85).

Mitophagy Detection

Cells were loaded in complete medium with 100 nmol/L Mitophagy Dye (Mitophagy Detection Kit, Dojindo Molecular Technologies). The data were analyzed post acquisition using FlowJo software (Tree Star). Ten thousand cells were acquired using channels 405-2-A (lysoTracker Dye), 561-3-A (Mitophagy Dye), and 640-1-A (MitoTracker Dye).

Mitochondrial Membrane Potential

Mitochondrial membrane potential was assessed using tetramethylrhodamine methyl ester bound to cationic carbocyanine (JC-1, Dojindo Molecular Technologies). Cells were treated with 100 nmol/L venetoclax or DMSO and with or without CCCP for 2 hours prior to the addition of the dye and flow cytometry.

Data Availability

Raw data files for CRISPR screens have been deposited at the Gene Expression Omnibus and can be found under the accession number GSE130414.

Disclosure of Potential Conflicts of Interest

A.V. Danilov has received commercial research grants from Gilead Sciences, Verastem, Takeda, AstraZeneca, and Verastem Oncology, and is a consultant/advisory board member for AbbVie, AstraZeneca, Genentech, Verastem Oncology, Seattle Genetics, TG Therapeutics, Curis, Celgene, Teva Oncology, and Gilead Sciences. B.J. Drucker serves on the board of directors of Amgen, Burroughs Wellcome Fund, and CureOne; reports receiving other commercial research support from Novartis, Bristol-Myers Squibb, and Pfizer (institutional funding—PI or co-investigator on clinical trials funded via contract with OHSU); has ownership interest (including stock, patents, etc.) in Amgen, Blueprint Medicines, MolecularMD (inactive—acquired by ICOn Laboratories), GRAIL, Patent 6598335 (exclusively licensed to Novartis), Henry Stewart Talks, Merck via Dana-Farber Cancer Institute (royalty payments); is a consultant/advisory board member for Aileron Therapeutics, ALLCRON, Third Coast Therapeutics, Vivid Biosciences, Monopoly (inactive), Baxalta (inactive), CTI Biopharma (inactive), Apteose, Beta Cat, Blueprint Medicines, Celgene, Cepheid, GRAIL (former), Gilead (former), and Patient True Talk; and is an uncompensated joint steering committee member for Beat AML LLC. J.W. Tyner has received commercial research grants from Agios, Apteose, Array, AstraZeneca, Constellation, Genentech, Gilead, Incyte, Janssen, Seattle Genetics, Syros, and Takeda; has received honoraria from the speakers bureaus of Therapeutic Advances in Childhood Leukemia and Hemmedicus - Acute Leukemia Forum; has ownership interest in Vivid Biosciences; and is a consultant/advisory board member of Vivid Biosciences. No potential conflicts of interest were disclosed by the other authors.

Authors’ Contributions

Acknowledgments

We thank Wesley Horton and Kevin Watanabe-Smith for analytical support and the OHSU Massively Parallel Sequencing Shared Resource and Flow Cytometry Core for technical support. This study was also supported by grants from the NCI (U01CA217862, I5UCA224019, and 3P0CA069533-18SS). J.W. Tyner received grants from the V Foundation for Cancer Research, the Gabrielle’s Angel Foundation for Cancer Research, and the NCI (1R01CA183947). S.K. Joshi is supported by the ARCS Scholar Foundation and the NCI (1F30CA239335-10).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
REFERENCES

40. Lagadinov ED, Sacha A, Callahan K, Rossi RM, Neering SJ, Minhauidzin M, et al. BCL-2 inhibition targets oxidative phosphorylation and

The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells

Updated version
Access the most recent version of this article at:
doi:10.1158/2159-8290.CD-19-0125

Supplementary Material
Access the most recent supplemental material at:
http://cancerdiscovery.aacrjournals.org/content/suppl/2019/05/02/2159-8290.CD-19-0125.DC1

Cited articles
This article cites 85 articles, 26 of which you can access for free at:
http://cancerdiscovery.aacrjournals.org/content/9/7/910.full#ref-list-1

Citing articles
This article has been cited by 10 HighWire-hosted articles. Access the articles at:
http://cancerdiscovery.aacrjournals.org/content/9/7/910.full#related-urls

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/9/7/910. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.