RESEARCH BRIEF

V211D Mutation in MEK1 Causes Resistance to MEK Inhibitors in Colon Cancer

Précis: A previously uncharacterized mutation in mitogen-activated protein kinase 1 (MEK1) is activating and resistant to allosteric MEK inhibitors, but sensitive to ATP-competitive inhibitors.

RESEARCH ARTICLES

Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms

C. Cimen Bozkus, V. Roudko, J.P. Finnigan, J. Mascarenhas, R. Hoffman, C. Iancu-Rubin, and N. Bhardwaj

Précis: Myeloproliferative neoplasm-associated calreticulin mutations elicit T-cell responses that can be promoted by immune checkpoint blockade with pembrolizumab.

Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efficacy in Triple-Negative Breast Cancer

Précis: Immune dysfunction associated with age in a mouse model of TNBC leads to lack of response to immune checkpoint blockade treatment that can be rescued by the addition of a STING agonist.

Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation

VIEWS

In The Spotlight

An “EZ” Epigenetic Road to Leukemia Stem Cell Metabolic Reprogramming?

M. Li and A.M. Melnick

See article, p. 1228

Epigenetic Control of Fatty-Acid Metabolism Sustains Glioma Stem Cells

H.C. Affronti and K.E. Wellen

See article, p. 1248

Unconventional T Cells in the Pancreatic Tumor Microenvironment: Thinking Outside the Box

S. Banerjee, V. Dudeja, and A. Saluja

See article, p. 1288

REVIEW

Targeting Autophagy in Cancer: Recent Advances and Future Directions

R.K. Amaravadi, A.C. Kimmelman, and J. Debnath

In this Issue

Highlighted research articles 1143

News In Brief

Important news stories affecting the community 1148

Research Watch

Selected highlights of recent articles of exceptional significance from the cancer literature 1153

Online

For more News and Research Watch, visit Cancer Discovery online at http://cancerdiscovery.aacrjournals.org/CDNews.
Précis: Knockout of the PRC2 component EZH2 and activating NRAS mutations cooperate to cause MPN progression to leukemia by upregulating the BCAA-metabolism enzyme BCAT1.

See commentary, p. 1158

Glioma Stem Cell–Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling 1248

Précis: Glioma stem cells upregulate the polyunsaturated synthesis enzyme ELOVL2, which alters cell-membrane properties and composition to maintain EGFR signaling.

See commentary, p. 1161

Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer 1268

Précis: Activating Kras mutations cause upregulation of the mitophagy-promoting protein NIX, which alters mitochondrial function and enhances redox capacity to support progression of pancreatic cancer.

Innate αβ T Cells Mediate Antitumor Immunity by Orchestrating Immunogenic Macrophage Programming 1288

Précis: Innate αβ T cells are a significant component of the tumor microenvironment in pancreatic ductal adenocarcinoma and delay tumor growth in mouse and human models.

See commentary, p. 1164

PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage 1306

AC icon indicates AuthorChoice

For more information please visit http://www.aacrjournals.org

ON THE COVER

Hundeyin, Kurz, and colleagues discovered that innate αβ T cells (αβT) were a substantial part of the T-lymphocyte population in human and mouse pancreatic ductal adenocarcinoma (PDA) tumors. These tumor-infiltrating αβTs were highly activated, had a phenotype markedly different from those in the periphery, and were protective against PDA progression in mice. Demonstrating the relevance of these findings to human disease, treatment of patient-derived organotypic PDA tumor spheroids with autologous αβTs led to conventional T-cell activation. The mechanism involved activation of CCR5, which induced immunogenic macrophage polarization. Collectively, these findings suggest that αβT-based cell therapies should be investigated for the treatment of PDA. For details, please see the article by Hundeyin, Kurz, and colleagues on page 1288.