MEK1 is activating and resistant to ATP-competitive inhibitors, but sensitive to allosteric MEK inhibitors.

Précis: A previously uncharacterized mutation in mitogen-activated protein kinase 1 (MEK1) is activating and resistant to allosteric MEK inhibitors, but sensitive to ATP-competitive inhibitors.

Immune Checkpoint Blockade Enhances Shared Neoantigen-Induced T-cell Immunity Directed against Mutated Calreticulin in Myeloproliferative Neoplasms

C. Cimen Bozkus, V. Roudko, J.P. Finnigan, J. Mascarenhas, R. Hoffman, C. Iancu-Rubin, and N. Bhardwaj

Précis: Myeloproliferative neoplasm–associated calreticulin mutations elicit T-cell responses that can be promoted by immune checkpoint blockade with pembrolizumab.

Interferon Signaling Is Diminished with Age and Is Associated with Immune Checkpoint Blockade Efficacy in Triple-Negative Breast Cancer

Précis: Immune dysfunction associated with age in a mouse model of TNBC leads to lack of response to immune checkpoint blockade treatment that can be rescued by the addition of a STING agonist.

Loss of EZH2 Reprograms BCAA Metabolism to Drive Leukemic Transformation

Précis: Knockout of the PRC2 component EZH2 and activating NRAS mutations cooperate to cause MPN progression to leukemia by upregulating the BCAA-metabolism enzyme BCAT1.
See commentary, p. 1158

Glioma Stem Cell–Specific Superenhancer Promotes Polyunsaturated Fatty-Acid Synthesis to Support EGFR Signaling 1248
Précis: Glioma stem cells upregulate the polyunsaturated synthesis enzyme ELOVL2, which alters cell-membrane properties and composition to maintain EGFR signaling.
See commentary, p. 1161

Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer 1268
Précis: Activating Kras mutations cause upregulation of the mitophagy-promoting protein NIX, which alters mitochondrial function and enhances redox capacity to support progression of pancreatic cancer.

Innate αβ T Cells Mediate Antitumor Immunity by Orchestrating Immunogenic Macrophage Programming 1288
Précis: Innate αβ T cells are a significant component of the tumor microenvironment in pancreatic ductal adenocarcinoma and delay tumor growth in mouse and human models.
See commentary, p. 1164

PTEN Methylation by NSD2 Controls Cellular Sensitivity to DNA Damage 1306

ON THE COVER
Hundeyin, Kurz, and colleagues discovered that innate αβ T cells (αβTs) were a substantial part of the T-lymphocyte population in human and mouse pancreatic ductal adenocarcinoma (PDA) tumors. These tumor-infiltrating αβTs were highly activated, had a phenotype markedly different from those in the periphery, and were protective against PDA progression in mice. Demonstrating the relevance of these findings to human disease, treatment of patient-derived organotypic PDA tumor spheroids with autologous αβTs led to conventional T-cell activation. The mechanism involved activation of CCR5, which induced immunogenic macrophage polarization. Collectively, these findings suggest that αβT-based cell therapies should be investigated for the treatment of PDA. For details, please see the article by Hundeyin, Kurz, and colleagues on page 1288.
CANCER DISCOVERY

9 (9)

Cancer Discov 2019;9:OF6-1323.

Updated version
Access the most recent version of this article at:
http://cancerdiscovery.aacrjournals.org/content/9/9

<table>
<thead>
<tr>
<th>E-mail alerts</th>
<th>Sign up to receive free email-alerts related to this article or journal.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reprints and Subscriptions</td>
<td>To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.</td>
</tr>
<tr>
<td>Permissions</td>
<td>To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/9/9. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.</td>
</tr>
</tbody>
</table>