Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor

J. Keith Killian1, Su Young Kim1, Markku Miettinen1, Carly Smith1, Maria Merino1, Maria Tsokos1, Martha Quezado1, William I. Smith, Jr.2, Mona S. Jahromi3, Paraskevi Xekouki4, Eva Szarek4, Robert L. Walker4, Jerzy Lasota1, Mark Raffeld1, Brandy Klotzle5, Zengfeng Wang1, Laura Jones1, Yueling Zhu1, Yonghong Wang1, Joshua J. Waterfall1, Maureen J. O’Sullivan6, Marina Bibikova5, Karel Pacak4, Constantine Stratakis4, Katherine A. Janeway7, Joshua D. Schiffman3, Jian-Bing Fan5, Lee Helman1, Paul S. Meltzer1

1NCI-CCR, Bethesda, MD; 2Suburban Hospital, Bethesda, MD; 3University of Utah, Salt Lake City, UT; 4Eunice Kennedy Shriver NICHD, Bethesda, MD, 5Illumina, Inc., San Diego, CA; 6Our Lady’s Children’s Hospital, Dublin, Ireland; 7Dana Farber Cancer Institute, Boston, MA
*Corresponding author.

Running Title: SDH deficiency underlies global epigenome divergence

Keywords: mitochondrial dysfunction, Krebs cycle, tyrosine kinase pathway, epigenomic programming, cancer genetics

Financial support statement: Intramural Research Program of NIH, National Cancer Institute, Center for Cancer Research

Conflicts of Interest: JBF, BK, and MB are employees of Illumina, Inc. The other authors disclose no potential conflicts of interest.

Corresponding Author:
Paul S. Meltzer, MD, PhD
Chief, Genetics Branch
National Cancer Institute
37 Convent Dr. MSC 4265
Bethesda, MD 20892-4265
Phone (301) 496-5266
Fax (301) 402-3241
Email: pmeltzer@mail.nih.gov

ABSTRACT

Gastrointestinal stromal tumors (GIST) harbor driver mutations of signal transduction kinases such as KIT, or alternatively, manifest loss-of-function defects in the mitochondrial succinate dehydrogenase (SDH) complex, a component of the Krebs cycle and electron transport chain. We have uncovered a striking divergence between the DNA methylation profiles of SDH-deficient GIST (N=24) versus KIT tyrosine kinase pathway mutated GIST (N=39). Infinium 450K methylation array analysis of fixed (FFPE) tissues disclosed an order of magnitude greater genomic hypermethylation from gastric smooth muscle reference in SDH-deficient GIST versus the KIT mutant group (84.9K vs. 8.4K targets). Epigenomic divergence was further found among SDH-mutant paraganglioma/pheochromocytoma (N=29), a developmentally distinct SDH-deficient tumor system. Comparison of SDH-mutant GIST with isocitrate dehydrogenase (IDH)-mutant glioma — another Krebs-cycle defective tumor type — revealed comparable measures of global hypo- and hypermethylation. These data expose a vital connection between succinate metabolism and genomic DNA methylation during tumorigenesis, and generally implicate the mitochondrial Krebs cycle in nuclear epigenomic maintenance.

SIGNIFICANCE

This study demonstrates that SDH-deficiency underlies pervasive DNA hypermethylation in multiple tumor lineages, generally defining the Krebs cycle as mitochondrial custodian of the methylome. We propose that this phenomenon may
result from a failure of maintenance CpG demethylation, secondary to inhibition of the TET2 5-methylcytosine dioxygenase demethylation pathway by inhibitory metabolites that accumulate in tumors with Krebs-cycle dysfunction.
INTRODUCTION

DNA methylation profiles have been demonstrated to carry clinical predictive and/or prognostic value for multiple tumor types, and thus epigenotypetype-phenotype correlation is a powerful approach in cancer discovery and translational research. Recently, a clinically relevant oncogenotype-epigenotype correspondence has been established for some tumor mutation subtypes, and has provided novel insight into the mechanistic basis of cancer epigenomic reprogramming (1-3).

Gastrointestinal Stromal Tumor (GIST), the most common mesenchymal tumor of the GI-tract, is alternatively driven by mutant cell-surface KIT kinase-pathway hyperactivation, or mitochondrial metabolic derangement due to frequent mutation of succinate dehydrogenase complex (SDH) subunit genes SDHA, SDHB, SDHC, or SDHD (4-7). The distinction is important clinically because oncogenic KIT mutations are “actionable”, and may be targeted by therapy directed at mutant cell surface tyrosine kinase receptors (8). In contrast, the tumorigenic biochemistry of SDH deficiency stems from within the mitochondria. Normally, SDH converts succinate to fumarate in the Krebs/tricarboxylic acid (TCA) cycle, while providing electrons for oxidative phosphorylation in the inner mitochondrial membrane (9).

Tumor suppression by the SDH complex is mediated by regulating the level of succinate. Succinate accumulation within SDH-deficient cells inhibits alpha-ketoglutarate (α-KG)-dependent dioxygenase-catalyzed reactions that generate succinate and CO2 as byproducts. For instance, elevation of succinate levels unblocks the hypoxia-inducible factor (HIF) angiogenic pathway by inhibiting HIF
prolyl hydroxylation by PHD (8-10). Other dioxygenases, including some required for chromatin maintenance and DNA methylome stability, have been reported to also be affected by such a succinate product-inhibition mechanism (10). For example, succinate accumulation in SDH-deficiency was shown to be inhibitory for histone demethylation by JMJD3 (11). And more recently, SDH knockdown was found to elevate intracellular succinate levels and the succinate/α-KG ratio, which in turn was shown to antagonize TET2 dioxygenase-catalyzed oxidation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC), i.e., the initial step in the DNA demethylation pathway (12). Currently the effects of SDH deficiency on tumor tissue DNA methylation programming are not known, but based on these prior studies, altered profiles may be hypothesized.

Thus, beyond an important clinical distinction, the oncogenotype duality of GIST tumor subtypes suggests an elegant natural model in which to evaluate for epigenotype correlation, and further explore the role of mitochondrial process in epigenomic programming. In the current study we analyze the DNA methylome profiles of GIST tumors as a function of SDH- versus kinase- driver-mutation subclass. We then compare the methylomes of multiple Krebs cycle-mutant tumors across disparate developmental lineages including GIST, paraganglioma, pheochromocytoma, and glioma.

RESULTS

GIST, Comparison Tumors, and Normal Reference Samples

Included in the GoldenGate methylation analysis were 186 samples: 63 GIST (24 SDH-mutant and 39 KIT kinase pathway mutant); 21 glioma, (7 IDH1 mutant
and 14 IDH1 R132 w.t.; 29 paragangioma/pheochromocytoma (20 SDH mutant and 9 w.t.); and 73 normal reference tissues including gastrointestinal muscularis mucosa, gastric mucosa, neuronal tissue, glial tissue, adrenal gland, and lymphoid tissue (Figures 1-4; Supplemental Table 1).

Bimodal GIST Methylation Programming

Target methylation profiles of GIST samples fit a strongly bimodal distribution (Fig. 1B). SDH-mutation versus kinase pathway mutation status segregated perfectly with the two methylation subclasses (Fig. 1B). Also, SDH-complex deficiency as determined by immunohistochemistry (IHC) segregated perfectly with both SDH mutation and methylation subclasses, as all SDH-mutant tumors, but no kinase pathway mutants, were SDH-deficient by IHC.

Methyl- divergence of SDH-Mutant GIST

To compare epigenomic divergence from baseline of the two SDH-subclasses, we analyzed methylation-profile relatedness to those of multiple anatomically relevant normal tissues (Fig 1A, 1C; Supplemental Table 2) (13-14). GIST is postulated to derive from the lineage of interstitial cell of Cajal (ICC), a mesodermal cell resident of the GI tract involved in peristalsis and with both neuronal and mesenchymal characteristics (15-16). Thus, neuronal cells and gut muscularis (Fig 1A) were selected for the relatedness comparison. Also included were gut mucosa and lymphoid tissue, potential constituents of GIST specimens.

Unsupervised principal component analysis (PCA) and hierarchical clustering showed that the kinase-mutant GIST methylome signature most closely resembles that of all evaluated normal tissues, particularly muscularis and neuronal
tissue (Fig. 1C). In contrast, the SDH-mutant subclass comprised a distant out-group to all tissues (Fig. 1C). The marked divergence of the SDH-deficient methylation profile from multiple normal references argues against a purely clonal enrichment for the epigenome of a normal cell precursor population in normal gut, and instead supports a divergence during tumorigenesis. Thus, the kinase-mutant and SDH-deficient GIST methylation subclasses were respectively termed methyl-centrist and methyl-divergent.

We subsequently quantified the relative contributions of hypo- and hypermethylation to the aberrant methylation profiles of SDH- versus kinase-mutant GIST (Fig. 2). Interestingly, we observed a comparable number of significant CpG target hypomethylations in both subclasses: 209 and 203, respectively; in contrast, we observed 457 significant hypermethylations in the SDH-mutants, versus only 19 among KIT pathway mutants (Supplemental Table 2; Fig. 2 A-C). Overall, there is a comparable and substantial hypomethylation fraction in both oncogenotypes, but a significantly greater genomic hypermethylation in SDH-mutants.

The 450K Infinium Methylation array platform, with 300X coverage of GoldenGate arrays, confirmed these results (Fig. 2 D-F). First, the 450K arrays revealed sizable and comparable hypomethylation activities in both SDH-deficient/methyl-divergent and kinase-mutant/methyl-centrist GIST: 66.7K and 71.6K CpG targets, respectively. Second, the high-density arrays uncovered an order of magnitude greater number of hypermethylated differentially methylated CpG
targets (DMT) between methyl-divergent and -centrist GIST subclasses: 84.9K versus 8.4K.

Among SDH-deficient tumors, there was proportionate hypermethylation of CpG-island (CGI) and non-CGI genomic domains (Fig. 2G); similarly, other genomic motifs including gene promoters, bodies, and enhancers were hypermethylated in proportion to their representation on the arrays (Fig. 2G). By contrast, this analysis did positively identify significant enrichment for DNase hypersensitive sites (DHS) among the methyl-divergent GIST DMT (Fig. 2G). Thus, the underlying process of widespread hypermethylation in SDH-deficiency cannot be satisfactorily characterized as a CpG-island methylator specific. Additionally, the genomic target differential methylation in these tumors is not random, evidenced by the large numbers of significant, recurrent hypo- and hypermethylation genomic targets (66.7K and 84.9K targets, respectively, Sup. Table 3), principal component uniformity among samples, hierarchical clustering (Fig. 2D,E), and significant enrichment for DHS (Fig. 2G).

Overall, the primary distinction observed by methylation microarray between SDH- and kinase pathway mutant GIST was marked hypermethylation in the former. Neither subclass showed a significant bias toward CGI methylation as a fraction of total hypermethylation (Fig. 2G).

Loss of 5-hmC in Methyl-Divergent GIST

Mechanistically, accumulation of cytosine 5-methylation in methyl-divergent tumors may arise from de novo methylation and/or failed maintenance
demethylation. It has been previously reported that elevated intracellular succinate levels result from SDH-deficiency, and are toxic for the dioxygenase TET2, an enzyme required to catalyze DNA demethylation by conversion of 5-mC to 5-hmC. Thus, GIST tumors were scored for loss of 5-hmC by immunohistochemistry. 16 of 24 methyl-divergent versus 1 of 12 methyl-centrist tumors demonstrated loss of 5-hmC (p=0.001). Thus the finding of significant deficiency of 5-hmC in SDH-null GIST (Fig. 2H) is consistent with a failure in TET2 maintenance demethylation in SDH-deficient GIST. This potential connection in GIST between succinate accumulation, TET inhibition, and loss of 5-hmC is supported by the recent finding in melanoma that downregulation of TET family proteins leads to loss of 5-hmC (17).

Genomic Stability Of Methyl-Divergent GIST

We further evaluated the genomic copy number landscape of GIST for ties to the identified bimodal epigenomic divergence. The genomes of KIT-mutant/methyl-centrist GIST samples featured numerous and recurrent copy number aberrations, including gains and losses of multiple chromosome arms similar to most types of cancer (18) and other published reports of GIST (19-20) (Fig. 1B; Supplemental Figure 1). In contrast, methyl-divergent GIST samples had remarkably stable genomes, with either no copy number changes or <= 2 chromosome arm copy number changes (Fig. 1B; Supplemental Figure 1), often limited to a single somatic loss on 1p or 5p overlying germline SDHB or SDHA mutation. Thus, a highly altered epigenome is a unifying feature of SDH-deficient GIST, and in some cases may be the only identifiable molecular aberration. No samples had both a normal genome and a
normal methylome, and overall we observed an inverse correlation between karyotypic aberration and epigenomic divergence in GIST samples (Fig. 1B).

Methyl-Divergence in SDH-Deficient Paraganglioma and Pheochromocytoma

We next sought to further validate and test the generality of the link between *SDH*-mutation and methyl-divergence in tumorigenesis. As a model system, we analyzed other naturally occurring human SDH-deficient tumor tissues, in particular *SDH*-mutant hereditary paraganglioma and pheochromocytoma (PGLs/Pheos). As is the case with GIST, a subset of PGLs/Pheos occur in the setting of germline *SDH*-mutation followed by a somatic second hit, thereby creating a genetic and functional *SDH*-null tumor. In contrast with the mesenchymal lineage of GIST, PGLs/Pheos are neuroendocrine tumors of neural crest embryonic origin, and arise in multiple anatomic sites outside the gut. We determined the methyl-divergence status for PGLs/Pheos based on comparison to adrenal reference tissue, including microdissected adrenal medulla, the postulated lineage origin for pheochromocytoma (Fig. 3A). GoldenGate DNA methylation profiles from 29 PGLs/Pheos showed an elevated total number of target hypermethylation in the *SDH*-mutant versus –wildtype subgroup (177 targets versus 49 targets; Figure 3B, Supplemental Table 2). Moreover, as in GIST, there is an elevated ratio of hyper- to hypomethylated targets in the *SDH*-mutant group, while in the *SDH*-wt group hypermethylation are only a fraction of hypomethylations (Fig. 3C-F). Thus, human SDH-deficient tumors from multiple anatomic origins including stomach,
adrenal, and carotid body and other paraganglia manifest oncogenotype-dependent methyl-divergence profiles.

Comparison of SDH- and IDH-Defective Tumors

Upstream of SDH in the Krebs cycle, isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate, producing α-KG and CO2. Mutation of *IDH* genes is coupled with heightened genomic methylation in several cancers. As postulated for elevated succinate levels stemming from SDH-deficiency, the result of *IDH* mutation is accumulation of a metabolite that is inhibitory for TET-family dioxygenase-mediated DNA demethylation. Using the GoldenGate methylation assay, we compared the epigenomic profiles of *SDH*-mutant GIST with those of *IDH*-mutant glial neoplasms (i.e., gliomas). Normal brain glial tissue served as the differential methylation reference tissue for glioma (Fig. 4A-C). We identified 388 and 140 hyper- and hypomethylations in *IDH1*-mutant gliomas, compared to 457 and 209 in *SDH*-mutant GIST (Fig. 4; Supplemental Table 2). Thus, *IDH1*-mutant glioma and *SDH*-mutant GIST epigenomes have comparable proportions of hyper- and hypomethylation.

Subsequently we performed combined analysis on all the tumors in the study. Unsupervised hierarchical clustering assorted the gliomas, GIST, paragangliomas and pheochromocytomas, not according to anatomic site of origin, but instead according to presence or absence of a Krebs-cycle mutation (Fig. 4D); the heat map further displays that hypermethylated targets in *SDH*-mutant GIST are similarly hypermethylated in other Krebs-cycle mutant tumors. Next, the PCA
analysis showed the Krebs-cycle mutant tumors to lie along a shared principal axis orthogonal to the non-mutants, which more-closely clustered with the normal tissues (Fig 4E). Taken together, these data identify epigenomic homology of tumors from four divergent developmental lineages that have in common a mutation of a Krebs-cycle enzyme.

DISCUSSION

In this study we have found a striking correspondence between GIST oncogenotype and epigenotype, evidenced by marked methyl-divergence of SDH-mutants. While impaired SDH function has previously been tied to tumorigenesis (21) and chromatin modification (11), epigenomic profiling of SDH-deficient versus kinase pathway mutant tumors has not been reported.

One of the first described targets of pathologic succinate accumulation in tumorigenesis was hypoxia inducible factor-1 (HIF-1) prolyl hydroxylase (PHD), the inhibition of which leads to increased HIF-1 alpha activity and resultant tumorigenesis (22). Beyond unfettering HIF-1 mediated processes, succinate accumulation has been found to inhibit additional α-KG dependent processes that generate succinate and CO2 as byproducts (10). For example, DNA demethylation through the oxidation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) depends upon the dioxygenase TET2, and is inhibited by intracellular succinate accumulation; in the setting of SDH deficiency, tumors may be expected to accumulate 5-mC or lose 5-hmC, analogous to epigenotype profiles in tumors harboring IDH mutations or TET protein downregulation, respectively.
Thus, our results suggest a mechanism for cancer-related DNA hypermethylation in SDH-deficient GIST that may be analogous to that proposed for \textit{IDH} mutations in gliomas and leukemia. Rather than unscheduled \textit{de novo} methyltransferase activity, we propose that the hypermethylation phenomenon in this class of tumors may involve failure of maintenance DNA demethylation. Consistent with this idea, we found that \textit{SDH}-mutant paraganglioma/pheochromocytoma and GIST have similar proportions of hyper- and hypomethylated targets.

Importantly, we found that the methyl-divergence process is not random, as we uncovered tens of thousands of significant, recurrent hypermethylations and hypomethylations. Within the hypermethylated genomic compartment we found DNase hypersensitive sites (DHS) to be significantly enriched. It is possible that the identified changes define a succinate-sensitive hypermethylation genomic space in the GIST lineage. With this report, the methyl-divergence landscape of GIST tumors is now well characterized and clearly connected to the oncogenotype. Although the consequences of this altered epigenetic state for tumor cell behavior remain uncertain and merit further exploration, the widespread perturbation which we have observed is unlikely to be phenotypically neutral. Our finding that younger GIST patients with genome-copy-number stable tumors have such dramatic epigenomic reprogramming seems to discount relative contributions from age-related epimutation and potential genomic damage from reactive oxygen species. The epigenomic similarities of diverse Krebs cycle-mutant tumors support the idea of a shared etiology stemming from their metabolite profiles. Thus, the current work
definitively links SDH-deficiency to pervasive DNA hypermethylation, and generally implicates the Krebs cycle as mitochondrial custodian of the methylome.

METHODS

Tissue Specimens
Archival FFPE tumor and reference tissues were provided by the Pediatric and wildtype GIST Clinic (www.pediatricgist.cancer.gov) at the NIH (6). Samples were reviewed by a pathologist, and regions of characteristic histomorphology were needle microdissected. Tissue cores were lysed and processed to yield genomic DNA as previously described (23-24).

Immunophenotyping
SDHB and 5-hmC immunohistochemical staining and analysis were performed in a central laboratory (MM) for uniformity of results. For SDHB, clone 21A11 (Abcam, Cambridge, MA) was used at 1:1000 dilution. For 5-hmC, polyclonal rabbit anti 5-hmC (Active Motif, Carlsbad, CA) was used at 1:2000 dilution. Immunohistochemistry was performed on a Bond-Max autostainer (Leica Microsystems with high pH antigen retrieval (AR2, pH 8.0)). Loss of 5-hmC staining was defined as a >= 50% reduction in staining of tumor cell versus peri-tumoral normal fibrovascular stroma.

Genomic Copy Number Analysis
Tumor gDNAs were analyzed for chromosomal copy number aberrations using a commercial 180K-feature array comparative genomic hybridization (aCGH) assay (Agilent Inc., Sunnyvale, CA). Array fluorescence intensities were imported to Nexus 6.0 (Biodiscovery, Sunnyvale, CA), and analyzed using standard segment gain/loss
settings. Genomic copy number near-normal is defined as <= 2 gross chromosome arm gains or losses; genomic copy number aberration is defined as >= 3 gross chromosome arm gains or losses. Representative aCGH results are displayed in Supplemental Figure 1.

DNA Methylation Arrays

GoldenGate: gDNA was bisulfite converted and assayed using the GoldenGate Cancer Panel I methylation assay (Illumina, Inc.) as described previously (23, 25). Briefly, this assay measures DNA methylation at 1536 distinct CpG targets distributed among 818 genes. Methylation β values were extracted from Cy3 and Cy5 signal intensities using BeadStudio software (Illumina, Inc.), and samples were excluded that did not pass array signal intensity controls. GoldenGate Methylation β data are provided in Supplemental Table 2. These methylation β data may also be retrieved from Gene Expression Omnibus (GEO), accession number GSE34387.

Infinium 450K Methylation assay for FFPE samples: We used the EZ DNA Methylation kit (Cat# 5004, Zymo Research, CA, USA) for bisulfite conversion of genomic DNAs extracted from FFPE samples. For optimized results, we used 250 ng of gDNA and followed the manufacturer’s recommendations. Namely, gDNA was denatured by addition of NaOH-containing M-Dilution buffer and incubated for 15 min at 37°C. Freshly prepared CT-conversion reagent containing sodium bisulfite was added to the denatured DNA and samples were incubated for 16 h at 50°C in a thermocycler and denatured every 60 min by heating to 95°C for 30 s. After bisulfite conversion, the DNA was bound to a Zymo-Spin™ I-96 Binding Plate, washed with M-Wash Buffer and desulphonated on the binding plate using M-desulphonation
reagent. The bisulfite-converted DNA was eluted from the plate wells in 10 μl elution buffer.

Bisulfite converted DNA was restored using Infinium HD FFPE DNA Restore Kit (Cat#WG-321-1002, Illumina) following the manufacturer’s recommendations. The process restores degraded FFPE DNA to a state that is amplifiable by the Infinium whole genome amplification protocol. After DNA restoration, the Infinium Methylation assay was carried out as described previously (26). In brief, bisulfite converted and restored DNA (~ 8 μl) was used in the whole genome amplification (WGA) reaction. After amplification, the DNA was fragmented enzymatically, precipitated and re-suspended in hybridization buffer. All subsequent steps were performed following the standard Infinium protocol (User Guide part #15019519 A). Fragmented DNA was dispensed onto the HumanMethylation450 BeadChips, and hybridization performed in a hybridization oven for 20 h. After hybridization, was arrays were processed through a primer extension and an immunohistochemistry staining protocol to allow detection of a single-base extension reaction. Finally, BeadChips were coated and then imaged on an Illumina iScan. 450K methylation array data are provided via GEO accession number GSE34387.

Mutation Identification

For GIST tumors, genomic DNA libraries were constructed and *SDHA, SDHB, SDHC, SDHD, KIT, BRAF, NF1*, and *PDGFRA* genes were sequenced using a custom capture assay as previously described (7). IDH1 status of gliomas was determined by Sanger sequencing of the R132 codon. SDH status of paraganglioma and
pheochromocytomas was annotated as previously determined clinically, and results validated as part of this study.

Methylation Data Analysis

β values were imported to Qlucore Omics Explorer (QOE v2.2). For unsupervised cluster analyses, autosomal targets were selected, and then variance and normalization settings were dynamically tuned to produce the representative principal component analysis (PCA) plots and heat maps shown in figures. For PCA plots, data normalization in QOE was set to mean=0, var=1; for 2D heatmaps, data normalization method in QOE is indicated by the green-red color scale in the figure. Statistical significance of target differential methylation between various comparison groups is p<0.05 and group delta β > 0.1. In 450K methylation GIST group comparisons, annotation as SDH-deficient/mutant versus KIT kinase pathway mutant was based firstly upon sequencing and secondly upon SDHB immunohistochemistry for *SDH/KIT* wild-type samples.
REFERENCES

FIGURE LEGENDS

Figure 1. A: Histomorphology of GISTs and comparison reference tissues. B: Unsupervised PCA (left) and hierarchical clustering (right) sharply segregate SDH-mutant (*SDHA, B, C*, or *D*) and kinase-mutant (*KIT, PDGFRA, BRAF*, or *NF1*) GIST samples, and reveal marked methylation in the SDH mutants. SDH-mutation is also correlated with a nearly-normal genomic copy number (G-CNN), while kinase mutation is correlated with a copy-number abnormal genome (G-CAN). PCA and heatmap were derived from the 476 autosomal targets remaining after a methylation β variance filter across the 63 GIST samples was set to 0.5. C: Unsupervised PCA and hierarchical clustering of GISTs and normal reference tissues reveals distant divergence of SDH-mutant GIST. PCA and heatmap were derived from the 552 autosomal targets remaining after a methylation beta variance filter across the 109 samples was set to 0.5.

Figure 2. Visual display of the proportions of hyper- and hypomethylated differentially methylated targets (DMT) relative to reference muscularis tissue in SDH- versus kinase-mutant GIST. A: 2-D hierarchical clustering of 24 SDH-mutant GIST (dark blue) and 10 reference muscularis samples (cyan); CpG targets (y-axis) are filtered for significant DMT between the two sample groups (GoldenGate methylation assay, group delta β >0.1 and p<0.05, n=666 targets). Of the DMT, 457 are hypermethylated, and 209 are hypomethylated in SDH-mutant GIST. B. 2-D hierarchical clustering of 39 kinase-mutant GIST (green) and 10 reference baseline muscularis samples (cyan); CpG targets are filtered for significant DMT between the
two sample groups (GoldenGate methylation assay, group delta β >0.1 and p<0.05, n=222 targets). Of the DMT, 19 are hypermethylated, and 203 hypomethylated, in kinase-mutant GIST. C. 2-D hierarchical clustering of the union sets of all tissues (SDH-mutant GIST (n=24), kinase-mutant GIST (n=39) and reference muscularis (n=10)) and DMT (n=748 targets) from figures 2A and 2B. D. Hyper- and hypomethylated DMT composition for SDH-deficient versus kinase-mutant GIST (Infinium 450K methylation data). E. 2-D hierarchical clustering of SDH-deficient GIST (n=26, dark blue) and reference muscularis tissues (n=7, cyan) with Infinium 450K methylation data; targets included on the y-axis are the top hyper- and hypomethylated DMT selected in proportion to their fraction of total DMT (DMT defined as group delta β >0.1 and p<0.05. Displayed on the heatmap is the union set of 1.7K hyper- and 1.3K hypomethylated DMT, which reflects their proportions of total DMT.) F. 2-D hierarchical clustering of kinase-mutant GIST (n=44, green) and reference muscularis tissues (n=7, cyan) with Infinium 450K methylation data; targets included on the y-axis are the top hyper- and hypomethylated DMT in proportion to their fraction of total DMT (DMT defined as group delta β >0.1 and p<0.05. Displayed on the heatmap is the union set of 0.3K hyper- and 2.7K hypomethylated DMT, which reflects their proportions of total DMT.) G. Fold enrichment of genomic annotations of hypermethylated targets in SDH-deficient GIST based on their proportion of all array targets. CpG target anatomic and functional annotations are according to the Illumina Infinium 450K methylation assay manifest. *DNase hypersensitive site (DHS) is the only significantly enriched annotation (p=0.0022) after Bonferroni correction. TSS200: within a distance of
200bp of transcription start site; UTR: untranslated region. H. Representative immunohistochemical results for 5-hmC+ (left) and 5hmC-loss in GIST tumors (right). 16 of 24 methyl- divergent GIST had 5-hmC loss, versus 1 of 12 methylcentrist.

Figure 3. Human SDH-deficient tumor genotype-epigenotype validation model. A: Histomorphology of pheochromocytoma (pheo), paraganglioma (pgl), and comparison reference adrenal gland. B: Left: PCA segregates pgl/pheo according to oncogenotype, and reveals greater divergence from baseline adrenal for SDHmutants. The plot includes 20 SDH-mutant pgl/pheo, 9 SDH-wt pgl/pheo and 15 reference adrenal specimens. The PCA plot data are 340 autosomal targets filtered for methylation β variance > 0.5 among the 44 samples. C. Number of significant array target hyper- and hypomethylations as a function of tumor SDH mutation status (group delta β >0.1 and p<0.05). There are substantially more target hypermethylation in both SDH-mutant GIST and pgl/pheo compared to wildtype counterparts. D. 2-D hierarchical clustering of the 306 significant DMT between SDH-mutant pgl/pheo and adrenal reference (group delta β >0.1 and p<0.05). E. 2-D hierarchical clustering of the 303 significant DMT between SDH-wildtype pgl/pheo and adrenal reference (group delta β >0.1 and p<0.05). F. Hierarchical clustering of 20 SDH-mutant pgl/pheo, 9 wildtype pgl/pheo and 15 reference baseline adrenal samples based on the 340 union targets from 3D and 3E.
Figure 4. Comparison of IDH-mutant glioma with SDH-mutant GIST. A: Histomorphology of high-grade glioma, low-grade glioma, and comparison reference glia tissue. (Reference neuronal tissue is previously shown in Fig1A.) B: Left: PCA segregates glial neoplasms according to oncogenotype, and reveals greater divergence from baseline glia for IDH-mutants. The plot includes 7 IDH1-mutant glial tumors, 20 IDH-wt glial tumors, and 12 glia and 13 neuronal reference tissues. The PCA plot data are 386 autosomal targets filtered for methylation β variance > 0.5 among the 46 samples (GoldenGate methylation data). Right: Unsupervised 2-D hierarchical clustering of the same data. C. Left: Hypomethylated DMT (group delta β >0.1 and p<0.05, n=140 targets) identified in IDH-mutant glioma relative to reference glia tissue. Right: Hypermethylated DMT (group delta β >0.1 and p<0.05, n=388 targets) identified in IDH-mutant glioma relative to reference glia tissue (GoldenGate methylation data) . D: Unsupervised hierarchical clustering of all tumors in the study. Top colorbar: tumor type; bottom colorbar: oncogenotype. The y-axis data are 575 autosomal targets filtered for methylation β variance > 0.5 among the 113 samples. Oncogenotype drives higher-level segregation. Also evident is the marked hypermethylation of SDH/IDH-mutant tumors of different lineage and anatomic sites. E. Unsupervised PCA plot of 186 study samples annotated as normal tissue, SDH/IDH-mutant tumor, or SDH/IDH-wt/kinase-mutant tumor (var 0.5, 649 targets). F. Quantities of significant hyper-and hypomethylated DMT in different tumor lineages as a function of mutant versus wildtype SDH/IDH status.
Figure 1

A

GIST-epithelioid
GIST-spindled
Muscularis
Gastric mucosa
Neuronal
Lymphoid

B

C

Downloaded from cancerdiscovery.aacrjournals.org on May 29, 2021. © 2013 American Association for Cancer Research.
Figure 2

A, B, C: Heatmaps showing gene expression patterns for Kinase-mutant, Muscularis, and SDH-deficient samples.

D: Pie chart showing the distribution of hypermethylated (Hyper) and hypomethylated (Hypo) targets.

E, F: Additional heatmaps with color coding for Kinase-mutant, Muscularis, and SDH-deficient samples.

G: Bar graph illustrating fold enrichment of hypermethylated targets across different genomic regions.

H: Images showing 5-hmC+ and 5-hmC loss.
Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor

J Keith Killian, Su Young Kim, Markko Miettinen, et al.

Cancer Discovery Published OnlineFirst April 2, 2013.

Updated version
Access the most recent version of this article at: doi:10.1158/2159-8290.CD-13-0092

Supplementary Material
Access the most recent supplemental material at:
http://cancerdiscovery.aacrjournals.org/content/suppl/2013/04/02/2159-8290.CD-13-0092.DC1
http://cancerdiscovery.aacrjournals.org/content/suppl/2021/03/02/2159-8290.CD-13-0092.DC2

Author Manuscript
Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cancerdiscovery.aacrjournals.org/content/early/2013/04/02/2159-8290.CD-13-0092. Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.