Aurora-A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene

Xueqian Gong1‡, Jian Du1‡, Stephen H. Parsons1‡, Farhana F. Merzoug1, Yue Webster1, Philip W. Iversen1, Li-Chun Chio1, Robert D. Van Horn1, Xi Lin1, Wayne Blosser1, Bomie Han1, Shaoling Jin1, Sufang Yao1, Huimin Bian1, Chris Ficklin1, Li Fan1, Avnish Kapoor1, Stephen Antonysamy2, Ann M. Mc Nulty1, Karen Froning2, Danalyn Manglicmot2, Anna Pustilnik2, Kenneth Weichert2, Stephen R. Wasserman3, Michele Dowless1, Carlos Marugán4, Carmen Baquero4, María José Lallena4, Scott W. Eastman5, Yu-Hua Hui1, Matthew Z. Dieter1, Thompson Doman1, Shaoyou Chu1, Hui-Rong Qian1, Xiang S. Ye1, David A. Barda1, Gregory D. Plowman1, Christoph Reinhard1, Robert M. Campbell1, James R. Henry1, Sean G. Buchanan1*

1Eli Lilly and Company, Indianapolis, IN 46285, USA

2Eli Lilly and Company, Discovery Chemistry Research and Technologies, Lilly Biotechnology Center, San Diego, CA 92121, USA

3Eli Lilly and Company, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439, USA

4Eli Lilly and Company, Lilly Research Laboratories, Avda. de la Industria, 30, 28108, Alcobendas, Spain

5Eli Lilly and Company, Alexandria Center for Life Sciences, New York, NY 10016, USA

‡These authors contributed equally to this work

*Corresponding author contact information:
mailing address: Lilly Corporate Center, Indianapolis, IN 46285, USA
phone: +1-317-651-4185
email address: buchananse@lilly.com

Conflict of interest statement: All authors are current, or former, employees of Eli Lilly and Company.
Running title: Aurora-A inhibitors are synthetic lethal with RB1 loss
Abstract

Loss-of-function mutations in the *retinoblastoma* gene *RB1* are common in several treatment-refractory cancers such as small-cell lung cancer and triple-negative breast cancer. To identify drugs synthetic lethal with *RB1* mutation (*RB1*mut), we tested 36 cell-cycle inhibitors using a cancer cell panel profiling approach optimized to discern cytotoxic from cytostatic effects. Inhibitors of the Aurora kinases, AurA and AurB, showed the strongest *RB1* association in this assay. LY3295668, an AurA inhibitor with over 1000-fold selectivity versus AurB, is distinguished by minimal toxicity to bone marrow cells at concentrations active against *RB1*mut cancer cells and leads to durable regression of *RB1*mut tumor xenografts at exposures that are well tolerated in rodents. Genetic suppression screens identified enforcers of the spindle assembly checkpoint (SAC) as essential for LY3295668 cytotoxicity in Rb-deficient cancers and suggest a model in which a primed SAC creates a unique dependency on AurA kinase for mitotic exit and survival.

Statement of significance

The identification of a synthetic lethal interaction between *RB1* and AurA kinase inhibition, and the discovery of a drug that can be dosed continuously to achieve uninterrupted inhibition of AurA kinase activity without myelosuppression, suggests a new approach for the treatment of Rb-deficient malignancies, including patients progressing on CDK4/6 inhibitors.
Introduction

An attractive strategy for cancer therapeutic discovery is to target enzyme functions that are dispensable in normal cells, but become essential for the survival of cells with mutated proto-oncogenes and tumor suppressor genes due to oncogene addiction (1), collateral vulnerability (2), and, more generally, synthetic lethality (3). While numerous drugs that exploit oncogene addiction have proved successful for the treatment of cancer, mutated tumor suppressor genes (TSGs) have thus far proved more challenging. A notable exception is the synthetic lethal interaction between BRCA-mutant cancer cells and PARP inhibitors and it has been proposed that this example should encourage the search for synthetic lethal ‘gene-drug’ interactions to target other TSGs in cancer (4).

One approach to the identification of new, synthetic lethal, gene-drug relationships is to perform genetic loss-of-function screens to identify dependencies, unique to cells with the mutated TSG, on genes which encode druggable enzymes (5). Drugs directed against the enzyme functions of hits from these screens must then be developed and tested to ensure that the gene-gene synthetic lethal relationship from the screen is preserved as a gene-drug interaction, not only in the screening models, but also, more broadly, among cells representing the clinical diversity of cancers with the TSG mutation. Indeed, depletion of a gene, or its mRNA, (and therefore protein), as occurs in genetic screens, can have very different phenotypic consequences to inhibition of its encoded enzyme function with a drug, and examples of discrepancies between gene knockdown and enzyme inhibition are well known (6). Most importantly, genetic screens will miss genuine synthetic lethal relationships between a mutated cancer gene and enzyme blockade if the protein has additional functions, beyond the enzyme activity, which are essential to viability of all cells. Ultimately, of course, it is the ‘gene-drug’
synthetic lethality that is required for therapeutic application, so an appealing alternative approach to ‘gene-gene’ screens is to directly screen drug-like compounds across large panels of cancer cell lines to determine whether TSG-mutated cancers display enhanced vulnerability to particular drugs. Such gene-drug screens avoid many of the shortcomings of gene-gene screens but require that sufficiently specific, cell-active enzyme inhibitors against the relevant target already exist.

The prototypical TSG, retinoblastoma or RB1, is mutated in some of the most aggressive and hard-to-treat malignancies, including small-cell lung cancer (SCLC), and triple-negative breast cancer (TNBC) (7). The function of the RB1 product, Rb, in controlling the G1-S transition in the cell cycle is well understood (8). New cell cycles are triggered by mitogens and hormones that activate G1 cyclins and these, in turn, promote the phosphorylation and neutralization of Rb. RB1 loss, therefore, subverts the normal requirement for external growth cues and cancers with RB1 mutation are expected to be refractory to cancer therapeutics acting on upstream mitogen and hormone pathways. Indeed, RB1 loss can emerge as a mechanism of resistance to EGFR, CDK4 and ER antagonists in lung (9) and breast (10,11) cancer. In addition to its well characterized role in controlling entry to S phase, multiple groups have reported that loss of Rb leads to a hyperactivated or ‘primed’ SAC (12). These results imply that RB1 mutant cancer cells must rely on a mechanism to overcome SAC priming to avoid the fitness cost of stalled mitoses (13), but the basis of that mechanism remains unknown.

The anti-proliferative activities of various cell-cycle inhibitors, as well as inhibitors of pathways that regulate Rb, such as the Ras-Raf pathway, have been linked to RB1 status (14-17). However, none of these drugs have been developed specifically for RB1 mutant cancers. Cytotoxic chemotherapy regimens acting post G1 in the cell cycle, e.g. tubulin-binding drugs,
do have activity against \(RB1^{\text{mut}} \) tumors (16). However, these drugs are indiscriminate (18), and are widely used to treat malignancies, such as hormone-receptor positive breast cancer, that are predominantly Rb-positive. Nevertheless, these results hint that \(RB1 \) mutation may confer a unique vulnerability to particular cell cycle events that could be exploited for the development of more effective treatments.

We previously reported a pharmacogenomic screening assay (19) that overcomes the confounding effects of the widely differing growth rates of human cancer cells (20). Importantly, as we show, this assay format permits uniform distinction between cytotoxic and cytostatic effects despite varying cell cycle times and so is well suited to test drugs that act on the cell cycle for synthetic lethal interactions. Using this assay to find drugs toxic to \(RB1^{\text{mut}} \) cancer, we identified inhibitors of Aurora kinases as top scoring hits and demonstrate that LY3295668, a highly specific AurA inhibitor, can kill Rb-deficient cancer cells at doses that have minimal effects on normal cells.

Results

\(RB1 \) mutant cancer cells are highly sensitive to Aurora kinase inhibitors

In pharmacogenomic screens the influence of cancer genomics on drug response is inferred from profiles of anti-proliferative activity across large panels of cancer cell lines. This approach has been effective in uncovering associations between oncogenes that activate mitogenic signaling cascades and drugs that inhibit the same pathways (21,22). However, the method has been less successful in identifying genetic associations for drugs that act directly on the cell cycle. This is surprising since many driver genes in cancer encode cell cycle regulators,
including frequently mutated tumor suppressor genes such as CDKN2A and RB1. We were interested to tailor the conventional pharmacogenomics assay to cell cycle inhibitors and to then test a collection of such compounds in parallel and determine which showed the most promising association to RB1.

We and others have previously shown that growth rate introduces substantial bias in the fixed duration (e.g. 72 hr), format that has been standard in pharmacogenomics assays (19,20). Growth rate bias is expected to be particularly problematic for cell cycle inhibitors and for distinguishing cytotoxic versus cytostatic effects. This is illustrated in the simulation in Supplementary Fig. S1 which shows how the dose response curve of a cytostatic compound varies with the number of population doubling times (DT), converging after 3-4DT to resemble the curve of an otherwise equipotent cytotoxic compound. To overcome this artifact, we established the growth rates in vehicle control conditions for hundreds of genomically characterized cancer cell lines and developed a pharmacogenomic screening assay normalized for growth rate by running each assay for 2DT rather than for a fixed duration (19).

We then used our 2DT drug screening assay to identify drugs selectively toxic to RB1mut cancer cells. 36 inhibitors that act on the cell cycle, or cell cycle regulating pathways, were selected for testing. These compounds inhibit a diversity of targets involved at all phases of the cell cycle with a bias towards drugs or drug-like compounds. The collection included compounds targeting G1 to S phase regulators (e.g. CDK4/6), S phase processes (e.g. CDC7 and topoisomerase inhibitors), mitotic proteins (e.g. tubulin, PLK1, Aurora kinases), mitogenic signaling pathways impacting G1-S transition (e.g. Ras pathway, RSK1 and mTOR), and other proteins that have been shown to impact cell cycle regulators such as Myc, p21cip1 and p53 (e.g. BRD4, MDM2).
The anti-proliferative activity of the 36 compounds against between 62 and over 500 cell lines from diverse epithelial, mesenchymal and hematologic cancer lineages was determined (Supplementary Table 1). The test panel included, at minimum, 7 (range 7-50) RB1 mutant cell lines to ensure sufficient power to detect RB1 synthetic lethal relationships. We ranked the 36 compounds for the strength of the association of sensitivity to RB1 mutation status using statistical methods described previously (19). As can be seen in Fig. 1A, RB1 mutation associates with resistance to Raf, MEK and CDK4/6 inhibitors and, conversely, to sensitivity to all three tested Aurora kinase inhibitors. RB1mut cells were, on average, also more sensitive than wild-type cells to inhibitors of other proteins active in mitosis, including the kinesin Eg5, and microtubules, but none of these compounds showed the same strength of association as the Aurora inhibitors. This difference was not an artifact of the different number of cell lines tested for each drug because a similar relationship was derived from a common set of 443 cell lines that were tested with 12 of the compounds, including 7 different mitosis inhibitors (Supplementary Table 1). A weak preferential sensitivity of Rb-null cancers to inhibitors of p38, RSK, PLK1, Eg5 and microtubules has been described before (16). However, Aurora inhibitors showed a much more pronounced effect than inhibitors of these targets in our profiling, suggesting that Aurora kinase inhibition might offer a unique therapeutic window that could be exploited for the treatment of RB1 mutant cancer. As explained below, we focused our subsequent investigation on further characterizing the relationship between RB1 status and response to Aurora-A kinase inhibitors (AurAi).

After 2DT, cell number will correspond to 25% of the DMSO control in response to the maximal effect of a purely cytostatic inhibitor. Therefore, we can infer that maximal inhibition values greater than 75% correspond to cytotoxic activity. As shown in Fig.1B, the dose-
response curves from the 2DT proliferation assay have a cytotoxic signature in $RB1^{mut}$ cells whereas a cytostatic signature typified $RB1^{WT}$ cells treated with the top scoring drug from our screen, the AurAi MK5108. This difference in effect is presumably due to increased apoptosis since caspase 3/7 activation was enhanced in Rb-null versus Rb$^+$ lung and breast cancer cells (Fig. 1C), and is not explained by weaker inhibition of AurA kinase activity in Rb$^+$ cells (Supplementary Fig. S2A-B). Artificial depletion of Rb from $RB1^{WT}$ lung and breast cancer cells (using either shRNA or siRNA reagents) led to enhanced cytotoxicity in response to the AurAi (Fig. 1D, E, Supplementary Fig. S3A-B), while ectopic $RB1$ expression in Rb-null cells was protective (Fig. 1F, G). Altogether, these data indicate that our screening assay had, as intended, identified a synthetic lethal gene-drug interaction for $RB1$.

A similar, Rb-dependent, sensitivity to inhibitors of either AurA, or AurB, as well as a synthetic lethal $RB1$-$AURKB$ gene-gene interaction, is described in a companion paper by Kaelin and co-workers. Interestingly, $AURKA$ gene knockout does not appear to associate strongly with $RB1$ (or Myc family gene) status, presumably because it is an essential gene in mammalian cells (23-25). Consistent with this, we found that $AURKA$ has the profile of a pan-dependent gene from a recently published, genome wide CRISPR screening dataset across 342 cancer cell lines (26) scoring as similarly critical for $RB1^{mut}$ and $RB1^{WT}$ cells (data not shown). This contrasts with the ability of $RB1^{WT}$ cells to survive high concentrations of AurA kinase inhibitors, and exemplifies the commonly observed phenomenon of protein depletion having a more severe phenotype than enzyme blockade (6).
The cytotoxicity of AurAi in \textit{RB1} mutant cells is dependent on inhibition of AurA kinase

In addition to alisertib, which inhibits both AurA and AurB (see below), both AurA-dominant (MK5108, MLN-8054) and AurB-specific (barasertib) compounds showed a strong association with \textit{RB1} implying that inhibition of either Aurora kinase should be sufficient to achieve a synthetic lethality. Since myelosuppression has been encountered in clinical studies with AurB-specific and dual AurA/B inhibitors (27-29), but not AurA-dominant drugs MK5108 and MLN-8054 (30,31), we reasoned that specific inhibition of AurA might be better tolerated than AurB, resulting in a better therapeutic window and permitting a higher dose intensity to more effectively treat Rb-deficient cancers.

Crystal structures reveal several features that distinguish the active site of AurA from AurB which we exploited to design a highly potent and selective inhibitor. The substituted isoquinoline (compound 1) derived from these efforts (Supplementary Fig. S4A-B). The carboxylic acid of 1 abuts Thr217 in AurA but is sterically and electronically incompatible with the glutamate at the equivalent position in AurB. The methylated piperidine ring likely further increases potency towards AurA by establishing a novel water-mediated hydrogen bond to the main-chain carbonyl of Glu260. 1 potently inhibited AurA auto-phosphorylation (0.46 nM IC\textsubscript{50}) in \textit{RB1}^{mut} NCI-H446 cells with over 1000-fold selectivity against AurB (measured by inhibition of phospho-histone H3). Capitalizing on these observations, further optimization of compound 1 led to the discovery of LY3295668 (Fig. 2A,B, Supplementary Information), an orally active compound with greater selectivity over AurB than any Aurora inhibitor reported to date (Fig. 2C, and further described in a manuscript in preparation, J.D., R.C., J.H.). The fluorine atom on the pyridine ring of LY3295668 helps orient the carboxylate in LY3295668 closer to Thr217 of
Aurora A likely contributing to its increased selectivity over AurB. (AurC is also over 2 orders of magnitude less sensitive to LY3295668 than AurA in enzyme assays, data not shown).

Since the Aurora inhibitors tested in our original screen are not exquisitely specific for AurA (Fig. 2C) (32), we wanted to determine whether LY3295668 maintained the strong association with RB1 status observed for those drugs across our cell line panel using the 2DT assay. (As shown in Supplementary Fig. S5 there was no correlation between cell line sensitivity and growth rate suggesting that, as anticipated, the 2DT format counteracts growth rate bias).

Across 517 cancer cell lines, those most sensitive to LY3295668 included RB1mut lung, breast, myeloma, retinoblastoma, and glioblastoma (Supplementary Table 2, Supplementary Fig. S6), and RB1 was the mutation most significantly associated with response to LY3295668 (Fig. 3A). The statistic for RB1 association is best powered in lung and breast cancer cells (Supplementary Fig. S6) so we focused the remainder of our investigation on these tumor types. Like MK5108, LY3295668 gave cytotoxic profiles in Rb-null, but not Rb+, SCLC cells, and in Rb+ NSCLC cells depleted of RB1 by shRNA (Fig. 3B-C), and activated apoptosis pathways much more strongly in Rb-null versus Rb+ lung and breast cancer cell lines (Fig. 3D-E, Supplementary Fig. S7). These data confirm that AurAi-RB1 synthetic lethality does not require AurB kinase inhibition.

To complement studies in which RB1 is artificially depleted from cancer cells, we also examined the consequence of natural loss of Rb as an adaptive response to selective pressure from drug treatment during acquired resistance (14). We took two CDK4/6i-sensitive ER+ breast cancer cell lines, MCF7 and MDA-MB-361, and from each derived palbociclib-resistant, variants by prolonged drug selection (see Methods). Two independent, palbociclib-resistant variants of MDA-MB-361 cells were generated, one (MB-361-PR) from a conventional, rising
dose selection method, the other (MB-361-PRENU) from a protocol using a pre-treatment with the mutagen ENU and then selecting a resistant clone at a fixed, high drug concentration (33). The two palbociclib-resistant variants of MDA-MB-361 cells exhibited reduced Rb expression and dramatically enhanced sensitivity to AurAi, whereas the drug-resistant MCF7 variant had higher levels of Rb, and was not sensitized to LY3295668 (Fig. 3F). By CRISPR-mediated removal of \(RB1 \) from MDA-MB-361 cells we confirmed that depletion of Rb confers resistance to the CDK4/6i but sensitizes to LY3295668 induced apoptosis (Supplementary Fig. S8A-C).

Aberrations in D-cyclin and Myc-family genes, which, like \(RB1 \) loss, release E2F-driven transcription at the G1-S cell cycle checkpoint (34), were also strongly associated with the LY3295668 profile. A relationship between Myc and AurAi sensitivity has been described previously (35,36), and the sensitivities of 87 cancer cell lines to a dual Aurora-A/B inhibitor were linked to Myc genes using an assay format partially adjusted for growth-rate (37). Myc-family gene amplification and \(RB1 \) mutation commonly co-occur, especially in SCLC. In the prior study across a small cell line panel (37), all SCLC cell lines were \(RB1 \) mutant precluding isolation of \(RB1 \) from Myc effects. In our profiling, although SCLC cells bearing both Myc-family and \(RB1 \) aberrations are more sensitive than SCLC with either feature alone, neither amplification nor high expression of Myc-family genes is required for sensitivity of \(RB1 \) mutant cells: several highly sensitive \(RB1 \) mutant cell lines have normal copy number and expression of Myc genes (Supplementary Fig. S9A-B). Furthermore, among \(RB1 \) mutant cancer cells, expression levels of Myc-family genes do not correlate with Abs IC\(_{50}\) (Supplementary Fig. S10A). Interestingly, among cells with amplification of one of the Myc genes, most (10/11) of those with low \(RB1 \) expression are sensitive while those expressing \(RB1 \) have only about a 30% chance of being sensitive (Supplementary Fig. S10B). We also examined the AurA activating
co-factors TACC3 and TPX2 to see whether their expression distinguished \(R^\text{mut} \) from \(R^\text{WT} \) cells. As shown in Supplementary Fig. S11A-B, there is no significant difference in expression of either co-factor in \(R^\text{mut} \) cells.

The specificity of LY3295668 helped establish AurA as the target most likely responsible for the \(R^\text{B1} \) association. In a kinome-wide survey, only 5 of 386 kinases were potently inhibited by LY3295668 (<10 nM) (manuscript in preparation, J.D., R.C., J.H.), and none of these kinases overlapped with targets of the other AurAi (MK5108, alisertib) that showed an \(R^\text{B1} \) association. Notably, no inhibition of SYK, which has been reported essential in the context of Rb loss (38), was observed up to 20 µM. We verified that there is minimal SYK inhibition, relative to the IC\(_{50}\) for AurA, for the different AurAi. The AurA IC\(_{50}\) is approximately 4000-fold, 12,000-fold or 50,000-fold lower than the SYK IC\(_{50}\) for MK5018, alisertib and LY3295668 respectively (Supplementary Fig. S12). Conversely, the relatively potent inhibition of AurA observed with the SYK inhibitor R406 (87 nM AurA v 42 nM SYK), may contribute to the activity of R406 in retinoblastoma (38).

We reasoned that if AurA was indeed the critical target for the toxicity of LY3295668 towards \(R^\text{mut} \) cells, then a drug-binding defective form of AurA kinase would be able to rescue \(R^\text{mut} \) cells from LY3295668 treatment. Our crystallography experiments had demonstrated that Thr217 is critical for high-affinity binding of LY3295668, so we expressed AurA\(^{T217D}\) in \(R^\text{mut} \) H446 cells to determine whether AurA inhibition is required for the drug’s activity. AurA\(^{T217D}\) is, as predicted, resistant to LY3295668 since cells expressing AurA\(^{T217D}\) are resistant to inhibition of AurA auto-phosphorylation (Fig. 4A). \(R^\text{mut} \) H446 cells expressing AurA\(^{T217D}\) are also protected from the cytotoxicity of LY3295668 (Fig. 4B,C), demonstrating that AurA inhibition is indeed critical for \(R^\text{B1}-\)LY3295668 synthetic lethality.
LY3295668 is cytotoxic to RB1 mutant cancers at exposures that are well tolerated in rodents and by human bone marrow cells

Assays to measure the cytotoxicity of drugs to human bone marrow (BM) cells growing in vitro are widely used for understanding the risk for clinical myelosuppression because they have a good track record of predictive power (39). Therefore, to test our hypothesis that truly specific AurA kinase inhibitors might avoid the myelosuppression seen with AurB inhibitors, we tested the anti-proliferative activity of LY3295668, and other Aurora and mitosis inhibitors, towards human blood mononuclear cells to compare the relative cytotoxicity to BM versus RB1 mutant cancer cells. As shown in Fig. 5A, BM cells were 10-fold less sensitive to LY3295668 than RB1mut H446 SCLC cells. In contrast, other mitotic inhibitors were toxic to BM cells at similar or even lower concentrations than those required to inhibit Rb-null cancer cells (Fig. 5A).

These data encouraged us to examine the efficacy of LY3295668 against SCLC tumors growing in vivo. Mice bearing SCLC xenografts were administered twice daily doses of 50 mg/Kg LY3295668 by oral gavage continuously for at least 3 weeks as shown in Fig. 5B. In accord with the in vitro findings, clear evidence of regression was observed for the three Rb-null SCLC xenograft models, but not for the RB1WT PDX model LXFS-1129. The oncolytic activity of LY395668 towards Rb-null tumors was rapid and persistent, provided drug was continuously administered (Fig. 5B). The dosing regimen of LY3295668 used was chosen because it is well tolerated in mice and corresponds to plasma concentrations that exceed the IC90 for inhibition of AurA for the entire dosing interval yet does not reach the IC90 for inhibition of AurB, even at Cmax (Fig. 5C). Similar exposures of LY3295668 in rats had
insignificant toxicological effects on bone marrow cells. In a one-month toxicology study, continuous dosing that resulted in comparable steady-state plasma concentrations to the mouse xenograft experiments caused no histological changes in bone marrow of the femur and sternum, and caused minimal changes in absolute numbers of circulating red blood cells, total white blood cells, lymphocytes, and eosinophils, with no effect on reticulocytes, platelets, neutrophils, or monocytes (data not shown).

Intact Spindle Assembly Checkpoint (SAC) function is required for the cytotoxicity of LY3295668

Various functions have been ascribed to AurA, the best characterized being roles in orchestrating normal centrosome maturation and mitotic spindle assembly. In an effort to understand why \(RB1^{mut} \) cells are so highly dependent on AurA kinase we examined whether LY3295668 has different effects on the morphology of the mitotic apparatus in \(RB1^{mut} \) compared to \(RB1^{WT} \) cells. These experiments are somewhat confounded by the rapid apoptosis apparent in Rb-null cells, but we saw no obvious differences in the effects of LY3295668 on centrosome biogenesis and mitotic spindle assembly in Rb-positive DMS-53 and MDA-MB-231 cells compared to Rb-null H2228 and HeLa cells (see below, data not shown).

These results hinted that a different function of AurA kinase may be responsible for the Rb interaction. We reasoned that depletion of gene products critical for the sensitivity of \(RB1^{mut} \) cells to AurAi would rescue cell growth in the presence of drug and hence an unbiased genetic suppressor screen might give clues to the mechanistic basis of the \(RB1 \)-AurAi synthetic lethality. To this end, we employed a genome-scale shRNA drug suppressor screen (40) in two Rb-null cells, NCI-H446 and MDA-MB-468, to identify genes critical for LY3295668
cytotoxicity (Supplementary Table 3). Several hits were identified, many common to both cell lines and therefore more likely true positives. These common suppressors might include both universal mechanisms that would explain the RB1-AurAi pattern observed across our cell panel, as well as less general mechanisms restricted to these two cell lines. If depletion of a gene reduces sensitivity to AurAi as a general mechanism, then cell lines with naturally low levels of the gene’s transcript might be expected to be less sensitive to AurAi across our cancer cell panel. Therefore, to enrich screening hits for genuine and broadly relevant suppressors, we triaged for genes where low mRNA associates with less sensitivity to LY3295668 across our entire cell line panel. We defined ‘universal suppressors’ as genes whose expression (i) scores as required for sensitivity to LY3295668 in both NCI-H446 and MDA-MB-468 suppressor screens (FDR < 0.5), and (ii) associates with LY3295668 sensitivity in the pharmacogenomic cancer cell panel screen (p-value < 0.05; Fig. 6A, Supplementary Table 3). Seven genes meet these criteria (Fig. 6B), and include BUB1B and BUB3, two of the three mitotic checkpoint complex (MCC) genes responsible for enforcing the SAC by inhibiting the activity of the anaphase promoting complex/cyclosome (APC/C). APC/C is the ubiquitin ligase responsible for degradation of securin and cyclin B to permit anaphase progression and mitotic exit (41). The third MCC gene, MAD2L1, was not represented in our shRNA library, but expression of MAD2L1 also correlates very well with sensitivity to LY3295668 across the panel (Fig. 6C).

The link with MCC genes is notable because Rb loss can prime expression of BUB1B/MAD2L1 (42,43) and it has been argued that Rb-null cancer cells must, therefore, acquire a mechanism to overcome the primed SAC and its negative impact on fitness (13). To explain our combined results, we wondered whether AurA kinase activity, which, uniquely among the mitotic drug targets, is capable of overriding the SAC (44,45), could contribute to this mechanism. If so, Rb-
negative cells would be strictly dependent on AurA kinase activity to exit mitosis. This model predicts a profound mitotic arrest in Rb-null cells exposed to AurAi concentrations that have minimal effect on mitotic duration in Rb-positive cells. AurAi have been shown to cause a transient mitotic arrest in Rb-proficient cells but this is typically readily resolved (46). In contrast, and consistent with this model, we find that in RB1mut cells LY3295668 prolongs the stability of the APC/C substrate cyclin B1 (Supplementary Fig. S13A-E) and causes a substantial mitotic arrest (Fig. 7A), without any evidence of AurB kinase inhibition and without obviously different consequences to the mitotic spindle morphology in RB1mut versus RBWT cells (Supplementary Figs. S13, S14). The timing of apoptosis coincides with the mitotic arrest (Supplementary Fig S13E) suggesting that AurAi-treated Rb-null cells predominantly die as a consequence of failure to escape mitosis. Depletion of BUB1B (Fig. 7B) or MAD2L1 (data not shown) reverses these effects, diminishing cyclin B1 accumulation and other markers of mitotic block, and reducing apoptosis. The enhanced LY3295668 sensitivity of breast and lung cancer cells depleted of RB1 is also associated with elevated markers of apoptosis and mitotic arrest (Fig. 7C). Similarly, natural Rb loss in MDA-MB-361PR cells is associated with elevated BubR1 and Mad2, but not Myc, levels and, in response to LY3295668, stabilized cyclin B1 and increased apoptosis (Fig. 7D, E, Supplementary Fig. S15). Together, these data suggest a unifying model (Fig 7F) in which AurA kinase can promote mitotic exit despite an activated SAC. This function, which presumably requires higher levels of catalytic activity than the various functions of AurA in mitotic entry and is therefore more sensitive to AurAi, is only vital to cells with mitotic stress caused by loss of Rb, Myc amplification, or spindle poisons such as tubulin inhibitors.
Discussion

To date, no drugs specifically tailored to the prototypical TSG, \textit{RB1}, have been discovered. Drug screens across large panels of cancer lines are, in principle, well suited for the discovery of novel ‘gene-drug’ synthetic lethal relationships but have so far failed to identify strong candidates for \textit{RB1}. Two large screens using conventional 72 hr assays (21,22) did not report drugs with significantly enhanced activity towards \textit{RB1}^\text{mut} cancer cells, although the GDSC study found a significant association between \textit{RB1} mutation and resistance to both CDK4/6 and MEK inhibitors. Using an assay that corrects for the growth rate bias of conventional fixed duration assays, we report that, among a collection of 36 cell cycle inhibitors, inhibitors of AurA or AurB kinases show the strongest differential cytotoxicity towards \textit{RB1}^\text{mut} versus wild-type cancers. A companion paper by Kaelin and co-workers describes a dependency of \textit{RB1} mutant cells on the \textit{AURKB} gene and, in accord with our data, a corresponding sensitivity of \textit{RB1} mutant cells to inhibitors of either AurA or AurB kinase activities.

To establish that \textit{RB1}-AurAi synthetic lethality is indeed a consequence of AurA inhibition, we introduce and use LY3295668, a new, truly specific AurAi, and show that LY3295668 cytotoxicity towards \textit{RB1}^\text{mut} cells is counteracted by a drug-binding defective AurA variant. We have followed modern usage (47,48) in employing the term ‘synthetic lethality’ to describe a gene-drug interaction: the effect of concomitant inhibitory perturbations to the \textit{RB1} gene and the AurA kinase function. Interestingly, despite surviving high concentrations of AurA kinase inhibitors, \textit{RB1} wild-type cells do not appear to tolerate knockout of the \textit{AURKA} gene, which is essential in mammalian cells (23-25). Therefore, this appears to represent an example where protein depletion has a more severe phenotype than enzyme inhibition (6), and hence there is
not evidence of a corresponding $RB1$-$AURKA$ gene-gene synthetic lethality. Such a discrepancy could be caused if AurA has important, kinase independent functions (49).

The model we propose (Fig 7F) to explain the striking sensitivity of $RB1$ mutant cells to AurAi is premised on the unique role of high level AurA kinase activity in overriding an activated SAC (44,45), a function that is likely distinct from the essential functions of AurA in normal mitosis. Based on prior reports showing that Rb loss is associated with increased priming of the SAC (12,13,43), we hypothesize that $RB1$ mutant, but not $RB1$ wild-type, cells constitutively require this function of AurA to exit mitosis. The model invokes an evolutionary process. It is well established that Rb loss, by itself, can be detrimental to mammalian cells, and an unknown mitotic escape mechanism has been postulated to necessarily occur during the evolution of Rb loss in cancer cells to compensate for the fitness disadvantage otherwise incurred (4). Our hypothesis is that loss of $RB1$ function only imparts a fitness advantage on cancer cells if AurA kinase activity is sufficiently high to overcome a mitotic delay. By examining a model of natural evolution of Rb loss in the context of resistance to CDK4/6i we have been able to begin to test this hypothesis. We show that cells that lose Rb as a mechanism of resistance to the CDK4/6i palbociclib show increased BubR1 and Mad2 and are sensitized to AurAi cytotoxicity.

Future work will be necessary to rigorously test and refine our model. It will also be important to further tease apart the relative contributions of Myc proteins and Rb loss to AurAi sensitivity. Rb loss and Myc amplification commonly co-occur, especially in SCLC, and we have not been able to identify $RB1$ mutant cells that do not co-express a Myc protein to completely rule out a role for Myc in the synthetic lethal effect. Indeed, Myc proteins may play an essential role in cells with defective Rb necessitating expression of at least one Myc family
member in Rb null cells (50). However, we have been able to show (i) that \(RB1^{mut} \) SCLC is more sensitive than \(RB1^{WT} \) SCLC, despite similar expression levels of Myc proteins, both \textit{in vitro} and \textit{in vivo} (ii) that artificial \(RB1 \) depletion by three different methods (siRNA, shRNA and CRISPR-Cas9), as well as (iii) natural selection of Rb loss in response to CDK4/6i, in various Rb-positive cancer cells, can clearly sensitize to AurAi without obvious increase in Myc protein levels. In fact, our model may help explain the association of Myc-family genes with AurAi since Myc has been reported to activate \(MAD2L1 \) expression (43,51). Other perturbations that prime the SAC would also be predicted to sensitize cells to AurAi. In this regard, we note that the potentiation of taxane cytotoxicity by dual AurA/Bi has been attributed to AurA (52). \(AURKA \) amplification, which is a frequent event in various epithelial tumors (53), was not associated with AurAi hypersensitivity in our profiling, perhaps because it is a vestige of adaptation to an SAC primed by a perturbation no longer present, such as from prior cytotoxic chemotherapy.

In summary, the data presented here predict that truly specific AurAi will provide a better therapeutic window than classic cytotoxic agents for the treatment of \(RB1^{mut} \) malignancies, permitting more aggressive dosing regimens. The poor prognosis of patients whose cancers lack functional Rb, coupled with the recent descriptions of \(RB1 \) mutations in cancers that become resistant to inhibitors of EGFR (9) and CDK4/6 inhibitors (11) highlight the pressing need for more effective treatments directed towards this tumor suppressor. To this end, a clinical trial is underway to test continuous dosing of LY3295668 for the treatment of patients with Rb-deficient cancers (NCT03092934).
Methods

Cell lines

All cell lines were obtained from commercial vendors and were cultured in conditions recommended by vendors. Cell line histology and site of origin annotation was derived from the source vendor or the COSMIC cancer cell line database (www.cancer.sanger.ac.uk). Prior to use, cell lines were tested for mycoplasma using a PCR-based method and cell line authenticity was confirmed by STR-based DNA finger printing and multiplex PCR (IDEXX-Radil). For mycoplasma-free cultures with authentic STR fingerprints, growth curves were determined to establish average population doubling time in the absence of drug treatment for each cell line. Cell density was optimized to ensure robust, logarithmic cell growth for the duration of compound exposure. All cell lines were used within 10 passages after recovery.

Cell proliferation assays

The 2DT cell panel screening assays using CellTiter-Glo® (CTG, Promega Corporation) and IC50 determinations were performed as previously described (19). For bone marrow (BM) cell assays, human bone marrow mononuclear cells (AllCells LLC, Alameda, CA) were prepared according to the manufacturer’s recommendations. BM cells were carefully thawed and suspended in warm growth media. The cells were resuspended the next day in media with human growth factors (erythropoietin, GM-CSF, IL-3, and SCF/c-kit ligand) and cultured for 72 hours. Then the cells were seeded into 96-well plates and treated with DMSO control or various compounds for 48 hours before cell viability (CTG assay) was determined. In parallel, NCI-H446 cells (SCLC) were cultured and treated with DMSO control and various compounds for 48 hours before cell proliferation was measured.
High content imaging and apoptosis assays

To measure apoptosis by high content imaging, cells were fixed in 3.7% formaldehyde (Sigma, cat#F-1268) or Prefer (Anatech), permeabilized with 0.1% Triton X-100 (Sigma) in PBS (Gibco) for 10 minutes, washed several times with PBS and blocked with 1% Bovine Serum Albumin (BSA) (Invitrogen #15260-037) in PBS for 1 hour at room temperature. All subsequent dilutions and washes were performed in PBS. Cells were incubated with primary antibodies to cleaved caspase3 (Cell Signaling #9661, RRID:AB_2341188) and cyclin B1 (BD Pharmingen #554177, RRID:AB_395288) diluted in 1% BSA overnight at 4°C. Cells were then washed 3 times and incubated with secondary antibody, 5 µg/ml goat α-rabbit-Alexa-647 (Molecular Probes #A-21244, RRID:AB_141663) and 200 ng/ml Hoechst 33342 (Molecular Probes #21492) or DAPI (Sigma) to detect nuclear material for 1 hour at room temperature. Cells were washed again 3 times and imaged using a CellInsight NXT (Thermo Scientific) or Acumen eX3 (TTP Labtech Ltd). For CellInsight NXT, a minimum of 1500 individual cellular images or 20 fields were captured for each well. Analysis was performed using the TargetActivation V.4 Bioapplication (Thermo Scientific). Arbitrary responder levels (percent positive for desired marker) were set based on the control groups for each cell line.

TUNEL staining was assayed with the In situ Cell Death Detection, Fluorescein kit (Roche Applied Science) following the manufacturer’s protocol. Fluorescence was captured using Acumen eX3.

To measure apoptosis by Incucyte Zoom instrument (Essen BioScience), NCI-H446 and Calu-6 cells were plated on Costar 3596 plates and treated with LY3295668 at different concentrations for 24, 48 and 72 hr. Caspase 3/7 activation was measured with CellPlayer 96-Well Kinetic.
Caspase 3/7 reagent (Essen BioScience 4440). Green fluorescent images were acquired every 2 hours. Green objects counted (y-axis) were either plotted against real time (x-axis) or raw numbers as percent control.

RNA interference studies

Cell lines were grown overnight in the appropriate growth media recommended by ATCC. For RB1 shRNA experiments, MDA-MB-231 and Calu-6 cells were transduced with RB1 shRNA (TRCN194866 and TRCN196261) for 48h and treated with LY3295668 at the different concentrations for a further 48hr. In addition, Calu-6 cells were also treated with MK5108 at different concentrations for 48 hours after RB1 shRNA transduction. Cells were then stained with propidium iodide (PI) for 1 h at room temperature. Fluorescence was read using Acumen eX3. For siRNA mediated RB1 knockdown in Calu-6 cells, cells were transfected with either Dharmacon RB1 Smart Pool (Cat #: L-003296-00-0005) or non-targeting control (Cat #: D-001810-01-05) siRNA according to the manufacturer’s protocol. Cells were then treated with DMSO or MK5108 at different concentrations. Cell growth was continuously measured using an ACEA instrument for 160 hours. For siRNA mediated MAD2L1 and BUB1B knockdown, NCI-H446 and NCI-H2228 cells were transfected with control siRNA2 (Ambion AM4637), MAD2L1 (Ambion S20468, Dharmacon Cat #: L-003271-00-0005) or BUB1B (Ambion S261, Dharmacon Cat #: L-004101-00-0005) siRNA for 72hr. Cells were then treated with DMSO, 100nM or 200nM LY3295668 for 24 hours.

shRNA drug modifier screen

MDA-MB-468 and NCI-H446 cells were infected with the Module 1 Decipher™ library targeting the signaling pathways (Cellecta, Mountain View, CA; Cat #DHPAC-M1-P) at a
multiplicity of infection of <1. The lentiviral based library is comprised of 5,043 genes with 5 to 6 plasmid pools per gene. Lentiviral particles were generated as described by the manufacturer. Infected cells were selected with puromycin for 72h. Following selection, cells were pooled, plated and treated with DMSO or LY3295668 at IC$_{90}$ concentration (200 nM for MDA-MB-468 and 400 nM for H446) for 6 (MDA-MB-468) or 4 (H446) days, refreshing media once during the experiment. Genomic DNA was extracted using the Qiagen kit (Cat # 13362) as described in the manual. The barcodes tagged to each shRNA were amplified by PCR and sequenced on Illumina NextSeq 500 according to Cellecta’s manual. ‘Common suppressors’ of AurAi were identified as genes whose shRNA abundance was enriched in LY-treated cells relative to DMSO control treated cells in both H446 and MDA-MB-468 cells (FDR < 0.5).

Western immunoblots

Cells were washed with PBS and were then lysed in lysis buffer containing protease and phosphatase inhibitors (Thermo Scientific, 1861281). Protein concentrations were determined by Bio-Rad Protein Assay Reagent (50000002). Cell lysates were cleared of debris by centrifugation at 14000 rpm for 10 minutes. Western blots were performed with antibodies directed to Rb1 (Cell Signaling, 9309, RRID:AB_823629), AurA (R&D, AF3295), AurA T288 (Cell Signaling, 3079, RRID:AB_2061481), cl-caspase 3 (Cell Signaling, 9661, RRID:AB_2341188), cl-PARP (Cell Signaling, 9541, RRID:AB_331426), cyclin B1 (Cell Signaling, 4138, RRID:AB_2072132 or 12231), MAD2 (BD Transduction Laboratories, 610679, RRID:AB_398006), BUBR1 (Bethyl Labs, A300-386A), histone H3 ser10 (Millipore, 06-570, RRID:AB_310177), c-Myc (Abcam, ab32072, RRID:AB_731658), N-Myc (Thermo Fisher, MA1-16638, RRID:AB_2235735), MycL1(R&D Systems, AF4050,
RRID:AB_2282440), GAPDH (Cell Signaling, 32233), and actin (Sigma, A5441, RRID:AB_476744). The images were captured with Odyssey® (LI-COR) or Amersham Imager 600 using manufacturer’s protocol.

AURKA and RB1 overexpression vectors and transfection

Wild-type and mutant T217D AURKA, and wild-type full length RB1 constructs were cloned into pcDNA3.1 and, for AURKA, tagged on the N-terminus with a 3x Flag tag. Cells were transfected with lipofectamine 2000 (Invitrogen, 11668-109), and selected with Geneticin for AURKA (Gibco, 10131-035) at 400ug/ml. Cells were plated onto poly-D-lysine plates (Corning, 354640) and treated in duplicate with a dose curve of either DMSO or LY3295668 for 2hr (AURKA) or MK5108 72 hr (RB1). For RB1 expression in MDA-MB-436 cells, expression levels were robust for at least 96 hours. AurA activity was measured with phospho-AurA (Thr288) Assay kit (MSD, K150JCD) as described by manufacturer. Proliferation was assessed by Cell Titer 96 (Promega, 63580) four days after cells were grown in RPMI 1640 (Gibco, 11875-093) and 10% FBS (Hyclone, SH30071.03).

Live cell imaging

Mitotic timing was determined by live cell phase contrast imaging by Incucyte using a 20X objective. Briefly, cells were plated in multi-well plates, treated with LY3295668 and imaged every 30 minutes for 72 hours. Time in mitosis was determined by first following cell round up and chromosome condensation as mitotic entry and then exit from mitosis by cell flattening and chromosome decondensation. Quantification was done by manually tracking 25 cells per cell line and treatment in Image J and time in mitosis was graphed as individual mitotic events with average hours in mitosis +/- SD.
Confocal microscopy for mitotic phenotype

Cells were treated for 24 hours in glass bottom chamber slides. Following treatment, cells were fixed in 4% paraformaldehyde in PBS for 20 minutes, permeabilized with 0.2% Triton X-100 in PBS for 5 minutes, and blocked with 1% Bovine Serum Albumin (BSA) in PBS for 20 minutes. Cells were incubated with primary antibodies to pericentrin (ab4448, Abcam) and alpha-tubulin (T5168, Sigma) diluted in 1% BSA/PBS for 1 hour, washed 3 times with PBS, incubation with secondary antibodies goat anti-rabbit Alexa Fluor 568 (A11011, Thermo Fisher) and goat anti-mouse Alexa Fluor 633 (A21053, Thermo Fisher) and sytox green (S7020, Thermo Fisher) to detect DNA for 1 hour. Cells were washed 3 times with PBS and imaged on a Zeiss LSM880 confocal microscope using the 63X 1.4 NA oil objective. Z stacks were taken of cells representative of cellular mitotic phenotypes. Maximum intensity projections are shown.

In vivo studies

All in vivo studies were performed according to the Institutional Animal Care and Use Protocols of the party or provider conducting the experiments. NCI-H69 cells were harvested, washed, and resuspended in a 1:1 mixture of serum free media and Matrigel (BD Biosciences, 354234) prior to subcutaneous implantation (6 x 10⁶ cells/mouse) in the rear flank of athymic nude female mice (Harlan, 7-8 weeks). The small cell lung cancer (SCLC) patient-derived tumor models (LXFS 615, LXFS 650, LXFS 1129) were derived from surgical specimens from patients at Oncotest (Oncotest GmbH, Charles River Laboratories, Freiburg, Germany). Following their primary implantation into nude mice (passage 1, P1), the tumor xenografts were passaged until stable growth patterns established. Stocks of early passage xenografts were
frozen in liquid nitrogen according to the relevant SOP for subsequent compound testing.

Tumors were implanted subcutaneously in the left flank and randomized when the volume reached 80 – 200 mm³ to start compound treatment. Tumor volume was estimated by using the formula: \(V = L \times W^2 \times 0.536 \) where \(L \) = larger of measured diameter and \(W \) = smaller of perpendicular diameter. 10 animals were used per treatment group and 8 animals in the vehicle group. Standard-of-Care (SOC): etoposide 30 mg/kg subcutaneously (S.C.) Q7Dx4 plus cisplatin 3.2 mg/kg S.C. Q7Dx4.

Resistant cell line generation

MDA-MB-361 and MCF-7 ER+ breast cancer cell lines were used to derive variants with acquired resistance to palbociclib. For MDA-MB-361 cells, palbociclib selection was performed with or without a prior mutagenesis step to increase the diversity of resistant mechanisms available for selection. For mutagenesis we adapted a published method (33). The mutagen ENU (N-Ethyl-N-nitrosourea, Sigma, N3385) was dissolved in DMSO at 50 mg/mL and stored in aliquots at -80°C. MDA-MB-361 cells were cultured in complete medium at an exponential growth rate when ENU was added at a concentration of 50 µg/mL for 16 hours. The cells were then washed 3 times with fresh medium, replated in complete medium, and allowed to expand for about 2 weeks under optimal conditions. After ENU exposure and recovery, cells were cultured in 96-well plates at 5000 cells/well in complete media with graded concentrations of the respective inhibitors. Wells were observed for cell growth by visual inspection under an inverted microscope. Fresh medium was supplemented when medium color changed. When growth in a well occurred, cells were transferred to 24-well plates and expanded in the presence of the corresponding inhibitor concentration used in the screen. Palbociclib-resistant derivatives of MDA-MB-361 and MCF-7 cell lines were also developed.
without ENU mutagenesis. To generate these variants cells at 50-60% confluence were treated with inhibitors at a concentration approximating the IC$_{50}$ for cell growth for about 1-2 weeks. Cells were passaged when they grew to 80% confluence. Upon every passage, cells were left untreated overnight for attachment and then retreated with incrementally higher doses. This process was repeated several times until the cells were able to grow in the presence of drugs at a high concentration with no apparent off target effects.

Variants that showed at least a 10-fold decreased sensitivity to palbociclib (i.e. > 10 fold increase in palbociclib IC$_{50}$) were identified from these experiments leading to the palbociclib resistant MCF7 cells (MCF7-PR) and two variants of MDA-MB-361 cells using either ENU mutagenesis (MDA-MB-361-PRENU) or the rising dose method (MDA-MB-361-PR).

Genomic data

Gene mutation, copy number and expression data were compiled from public domain data sets from COSMIC (www.cancer.sanger.ac.uk) and CCLE (www.broadinstitue.org/ccle/home).

Statistical analysis

Statistical analysis of the cell panel screening results was conducted as previously described (19). Linear regression and one-way ANOVA models were applied to test the significance of the association between abemaciclib potency across the cell panel and gene expression and mutation, respectively. Abemaciclib IC$_{50}$ was modelled on a log scale and a generalized Tobit model was applied to account for censored IC$_{50}$ data. False discovery rate (FDR) was computed using Benjamini Hochberg method.
Acknowledgements

This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. Use of the Lilly Research Laboratories Collaborative Access Team (LRL-CAT) beamline at Sector 31 of the Advanced Photon Source was provided by Eli Lilly Company, which operates the facility.
References

Figure Legends

Figure 1. AurAi are synthetic lethal with RB1 loss. A. FDR statistic for association between RB1 mutation and sensitivity (gray) or resistance (black) to 36 compounds. (See Supp. Table1 for details). B. Dose response curves from RB1 mutant and RB1 wild-type lung cancer cell lines treated with MK5108 using CTG. C. Caspase 3 activation in Rb-null (NCI-H446, MDA-MB-468) v. Rb+ (DMS-53, MDA-MB-231) cell lines treated with MK5108 from at least 2 independent experiments. D. MK5108 dose response curves in Calu-6 (Rb+, NSCLC) cells treated with shRNA directed at RB1 or control (Rb protein levels in the two conditions shown inset). E. Effect of RB1 knockdown on MDA-MB-231 cells treated with MK5108. F, G. RB1 was expressed in Rb-null MDA-MB-436 cells and their response to MK5108 (F) or alisertib (G) was tested using propidium iodide (PI) staining and high content imaging in at least 2 independent experiments.

Figure 2. LY3295668 is a highly specific AurA kinase inhibitor. A. Chemical structure of LY3295668. B. X-ray structure of AurA in complex with LY3295668 (magenta) determined at 2.0 Å. C. Geometric mean Kᵢ or IC₅₀ values (SEM, number of experiments) from enzyme and cell based assays for Aurora inhibitors used in this study. In some experiments values were undefined (below or above the threshold of detection, i.e. <1 or >10,000 nM) and for these cases geometric mean and SEM values are listed as a minimum or maximum values.

Figure 3. RB1 synthetic lethality is retained by the highly AurA-specific LY3295668. A. Top scoring associations between LY3295668 Abs IC₅₀ and key cancer genetic events across a panel of 517 human cancer cell lines from Supp. Table 2. B. Representative dose response curves from 2 independent experiments for LY3295668 treated Calu-6 (Rb+, NSCLC) cells transfected with RB1 or control shRNA. % inhibition from PI staining as described in methods.
C. LY3295668 dose response curves in SCLC cell lines (CTG, 2DT). D. Ratio of average LY3295668 IC\textsubscript{50} values for Caspase 3 or TUNEL activation in Rb+ (DMS-53, MDA-MB-231) versus Rb null (NCI-H446, MDA-MB-468) cells from high content imaging from 2 independent experiments. E. Caspase 3/7 activation by LY3295668 from cell imaging (Incucyte). n = 2 independent experiments. F. Anti-proliferative effects (CTG, 2DT) of AurAi against parent and palbociclib-resistant MDA-MB-361 and MCF-7 cells (representative curves from 3 independent experiments).

Figure 4. *RB1* synthetic lethality requires AurA kinase inhibition. Effect of LY3295668 on AurA-phosThr288 (A), caspase 3 cleavage (incucyte, B), and growth (CT96, C) in NCI-H446 cells expressing AurAWT (red) or AurAThr217Asp (blue) from 2 independent experiments.

Figure 5. Rb-null SCLC tumor xenografts regress in response to well tolerated concentrations of LY3295668 A. IC\textsubscript{50} ratios (CTG) for human BM cells versus Rb-null NCI-H446 after 48 hours from 2 independent experiments B. Effect of LY3295668 (50 mg/Kg bid po, blue) on growth of SCLC tumor xenografts versus SOC (green). The dosing duration is indicated by the red line. Rb expression levels in the PDX models inset. C. LY3295668 mean free blood concentration in mice treated with LY3295668 50 mg/Kg bid po relative to the IC\textsubscript{90} concentrations for AurA or AurB.

Fig 6. Mitotic checkpoint complex (MCC) gene expression levels inversely associate with LY3295668 cytotoxicity. A. Work-flow for triage of hits from the LY3295668 suppressor screen. B. List of universal hits. C. p-value for the association of expression of MCC genes with sensitivity (green) or resistance (red) to LY3295668 from Supp. Table 3.
Fig 7. Cytotoxicity and mitotic arrest of Rb null cells by AurAi requires SAC function. A. Duration in mitosis was determined from incucyte imaging data for 4 Rb-null and 3-Rb positive cell lines treated with 100nM LY3295668 or DMSO. The table lists the mean duration for each cell line, and the aggregated mean duration and mean delay for the Rb-positive and Rb-null cells without treatment (DMSO) or LY-treated respectively. 2-tailed p-value < 0.0001 for the difference in mean delay for the two groups. B. NCI-H446 or NCI-H2228 cells were transfected with BUB1B siRNA and treated for 24 hours with LY3295668 before lysis and immunoblotting with the indicated antibodies. C. RB1 was depleted by siRNA followed by 48 hr treatment with LY3295668 before lysis and immunoblotting with the indicated antibodies. D. MB-361-PR and parental MB-361 cells were treated with DMSO or 125 nM LY3295668 for 24 hours before lysis and immunoblotting with the indicated antibodies. E. % TUNEL positive MB-361-PR and parental MB-361 cells treated with LY3295668 for 72 hr relative to DMSO from high content imaging in 2 independent experiments. F. Unifying model posits that cancers with a hypersensitive or ‘primed’ SAC depend on AurA kinase for mitotic exit and survival. RB1 mutation or loss can prime the SAC explaining the RB1-AurAi synthetic lethality reported in this study. Other perturbations that prime the SAC, such as tubulin inhibitors or Myc amplification, may also show increased dependence on AurA kinase activity to escape mitosis and survive.
Fig. 2

A

![Chemical structure of LY3295668](image)

B

![3D molecular structure](image)

C

<table>
<thead>
<tr>
<th>Compound</th>
<th>AurA K_i (nM)</th>
<th>AurB K_i (nM)</th>
<th>AurA cell (H446 AurA auto-P IC$_{50}$) (nM)</th>
<th>AurB cell (H446 pH3 Inh 1h IC$_{50}$) (nM)</th>
<th>B/A cell ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>MK5108</td>
<td><0.81 (>0.037, n=2)</td>
<td>4.7 (1.03, n=2)</td>
<td>8 (3, n=3)</td>
<td>4210 (320, n=2)</td>
<td>526</td>
</tr>
<tr>
<td>Alisertib</td>
<td><1.1 (>0.21, n=5)</td>
<td>5.8 (0.80, n=6)</td>
<td>4 (2, n=5)</td>
<td>51 (7, n=2)</td>
<td>13</td>
</tr>
<tr>
<td>Barasertib</td>
<td>61 (19, n=3)</td>
<td>2.8 (0.96, n=3)</td>
<td>>10,930 (>7000, n=2)</td>
<td>11 (2, n=11)</td>
<td><0.001</td>
</tr>
<tr>
<td>Compound 1</td>
<td><0.9 (>0.073, n=7)</td>
<td>76 (13, n=6)</td>
<td><0.4 (>0.1, n=10)</td>
<td>634 (84, n=7)</td>
<td>>1500</td>
</tr>
<tr>
<td>LY3295668</td>
<td>0.8 (0.066, n=4)</td>
<td>1038 (265, n=5)</td>
<td>0.6 (0.5, n=4)</td>
<td>1420 (240, n=4)</td>
<td>2370</td>
</tr>
</tbody>
</table>
Fig. 3

A

Mutation associated with sensitivity
Mutation associated with resistance

B

% Inhibition

\[\log [\text{LY3295668}] \text{ M} \]

C

<table>
<thead>
<tr>
<th></th>
<th>NCI-H2171 (SCLC)</th>
<th>COR-L279 (SCLC)</th>
<th>NCI-H446 (SCLC)</th>
<th>Calu-6 (NSCLC)</th>
<th>NCI-H1341 (SCLC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Inhibition</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LY3295668 (µM)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

D

Caspase 3
TUNEL

E

% % caspase 3/7 positive cells

24hr
48hr
72hr

LY3295668 (nM)

F

<table>
<thead>
<tr>
<th></th>
<th>MDA-MB-361</th>
<th>MDA-MB-361-PR</th>
<th>MDA-MB-361-PRENU</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Inhibition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log (palbociclib) µM</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Molecular activity in different cell lines and inhibition percentages are shown in F.
Fig. 4
Fig. 6

A

NCI-H446 + shRNA library

NCI-H446 + DMSO

NGS High Ratio FDR < 0.5

NCI-H446 Suppressors

MB468 + shRNA library

MB468 + DMSO

NGS High Ratio FDR < 0.5

MB468 Suppressors

AND

H446 & MB468 Common Suppressors

AND

UNIVERSAL SUPPRESSORS

B

560 Cell Panel (mRNA p < 0.05)

BUB1B BUBL BUB3 BPTF CRADD AGPAT4 HES6

MB-468 (FDR < 0.5)

NCI-H446 (FDR < 0.5)

Genes with expression association (p < 0.05) to LY3295668 sensitivity across 500 cancer cells

C

p value

1.00E+00

1.00E-02

1.00E-04

1.00E-06

1.00E-08

1.00E-10

1.00E-12

BUBL MAD2L1 MAD2L2 BUB3 BUB1 FEB
Fig. 7

A

Rb null

![Graphs showing H2228, HeLa, H446, and MDA-MB-468 cell lines with Rb null status.](image)

Rb positive

![Graphs showing DMS-53, MDA-MB-231, and Calu-6 cell lines with Rb positive status.](image)

B

Control siRNA

![Western blots of LY3295668, BUBR1, Cyclin B1, p-Histone H3 (Ser10), Cleaved caspase 3, and β-Actin in NCI-H446 and NCI-H2228 cells.](image)

BUB1 siRNA

![Western blots of LY3295668, BUBR1, Cyclin B1, p-Histone H3 (Ser10), Cleaved caspase 3, and β-Actin in NCI-H446 and NCI-H2228 cells.](image)

C

Control siRNA

![Western blots of Rb, Cleaved caspase 3, Cleaved caspase 2, Cleaved PARP, p-AurA (T288), Cyclin B1, and p-histone H3 (S10) in MDA-MB-231 and Calu-6 cells.](image)

RB1 siRNA

![Western blots of Rb, Cleaved caspase 3, Cleaved caspase 2, Cleaved PARP, p-AurA (T288), Cyclin B1, and p-histone H3 (S10) in MDA-MB-231 and Calu-6 cells.](image)

D

MB-361 parent

![Western blots of BUBR1, MAD2, Cyclin B1, Cleaved caspase 3, and β-actin in MB-361 parent cells.](image)

MB-361-PR

![Western blots of BUBR1, MAD2, Cyclin B1, Cleaved caspase 3, and β-actin in MB-361-PR cells.](image)

E

![Bar graph showing % increase in TUNEL positive cells with [LY3295668] nM.](image)

F

![Flowchart depicting Rb, Myc, Tubulin inhibitors, Low AurA Kinase Activity, High AurA Kinase Activity, MCC Genes (MAD2L1, BUB1), and Mitotic Arrest & Apoptosis.](image)
Aurora-A kinase inhibition is synthetic lethal with loss of the RB1 tumor suppressor gene

Xueqian Gong, Jian Du, Stephen H. Parsons, et al.

Cancer Discov Published OnlineFirst October 29, 2018.

<table>
<thead>
<tr>
<th>Updated version</th>
<th>Access the most recent version of this article at: doi:10.1158/2159-8290.CD-18-0469</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Access the most recent supplemental material at: http://cancerdiscovery.aacrjournals.org/content/suppl/2018/10/26/2159-8290.CD-18-0469.DC1</td>
</tr>
<tr>
<td>Author Manuscript</td>
<td>Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited.</td>
</tr>
</tbody>
</table>

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link
http://cancerdiscovery.aacrjournals.org/content/early/2018/10/26/2159-8290.CD-18-0469.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.