An empirical antigen selection method identifies neoantigens that either elicit broad anti-tumor T cell responses or drive tumor growth

Hubert Lam¹, Lisa K. McNeil¹, Hanna Starobinets¹, Victoria L. DeVault¹, Roger B. Cohen², Przemyslaw Twardowski³, Melissa L. Johnson⁴, Maura L. Gillison⁵, Mark N. Stein⁶, Ulka N. Vaishampayan⁷, Arthur P. DeCillis¹, James J. Foti¹, Vijetha Vemulpalli¹, Emily Tjon¹, Kyle Ferber¹, Daniel B. DeOliveira¹, Wendy Broom¹, Parul Agnihotri¹, Elizabeth M. Jaffee⁸, Kwok-Kin Wong⁹, Charles G. Drake⁶, Pamela M. Carroll¹, Thomas A. Davis¹, Jessica Baker Flechtner¹*

Affiliations:
¹Genocea Biosciences Inc., Cambridge, MA
²University of Pennsylvania, Philadelphia, PA.
³John Wayne Cancer Institute, Santa Monica, CA
⁴Sarah Cannon Research Institute, Nashville, TN
⁵MD Anderson Cancer Center, Houston, TX
⁶Columbia University Medical Center, New York, NY
⁷Karmanos Cancer Institute, Detroit, MI
⁸Johns Hopkins School of Medicine, Baltimore, MD
⁹NYU Langone Health, New York, NY

*To whom correspondence should be addressed: Jessica Baker Flechtner, 100 Acorn Park Dr., Cambridge, MA 02140; jessica.flechtner@genocea.com

Running Title: ATLAS-identified neoantigens may improve tumor immunotherapy

Keywords: Neoantigen, Immuno-oncology, Vaccine, Personalized, Tumor

Competing interests: VV, ET, DD, WB, JRD, JF, HS, VD, HF, DBD, HL, LKM, JBF, PC, PA, and TD are current or former employees of Genocea Biosciences with ownership stake in the company. CD, KW, LZ, EJ, and AD are paid consultants of Genocea Biosciences. Related intellectual property: WO2018/175505 "Treatment Methods" (pending)
Abstract

Neoantigens are critical targets of anti-tumor T cell responses. The ATLAS™ bioassay was developed to identify neoantigens empirically by expressing each unique patient-specific tumor mutation individually in E. coli, pulsing autologous dendritic cells in an ordered array, and testing the patient’s T cells for recognition in an overnight assay. Profiling of T cells from lung cancer patients revealed both stimulatory and inhibitory responses to individual neoantigens. In the murine B16F10 melanoma model, therapeutic immunization with ATLAS-identified stimulatory neoantigens protected animals, whereas immunization with peptides associated with inhibitory ATLAS responses resulted in accelerated tumor growth and abolished efficacy of an otherwise-protective vaccine. A planned interim analysis of a clinical study testing a poly-ICLC adjuvanted personalized vaccine containing ATLAS-identified stimulatory neoantigens showed that it is well-tolerated. In an adjuvant setting, immunized patients generated both CD4+ and CD8+ T cell responses, with immune responses to 99% of the vaccinated peptide antigens.

Statement of significance

Predicting neoantigens in silico has progressed, but empirical testing shows that T cell responses are more nuanced than straightforward MHC-antigen recognition. The ATLAS bioassay screens tumor mutations to uncover pre-existing, patient-relevant neoantigen T cell responses and reveals a new class of putatively deleterious responses that could impact cancer immunotherapy design.
Introduction

The clinical benefit of immune checkpoint inhibitor (ICI) therapies in cancer provides evidence that the immune system can control and even eradicate tumors (1). The effectiveness of ICI therapies relies primarily on T cell recognition of neoantigens derived from tumor-specific mutations (2-4). Cancer vaccines based on these neoantigens have the potential to target a broad array of targets by increasing the pool of neoantigen-specific CD4+ and CD8+ T cells, which may limit metastatic tumor escape. Both T cell subsets have clear importance in controlling tumor growth (5,6). Moreover, CD4+ T cell support during priming is critical for secondary expansion and effector function of CD8+ T cell responses (7). Successful generation of immunity against cancer neoantigens has the potential to increase the efficacy of ICI therapies while being safe and well-tolerated.

The feasibility of personalized neoantigen cancer vaccines was recently demonstrated in two independent clinical trials in which computational methods were used to predict MHC class I antigens from large numbers of neoantigen candidates (8,9). In these studies, 20% or fewer of the neoantigens selected as MHC class I epitopes were immunogenic for CD8+ T cells when measured directly ex vivo after vaccination. Most of the responses were measured in the CD4+ T cell subset despite having been predicted as CD8+ T cell antigens (10). In silico prediction for MHC-class II antigen identification presents multiple challenges including polymorphisms in the class II molecules, variations in epitope length, the influence of peptide flanking regions, and challenges in the identification of the correct binding core (11). Even if computational methods correctly predict MHC antigen presentation, antigens selected by this approach may still fail because the patient’s T cell repertoire cannot respond to the antigen in vivo.

To overcome the challenges associated with in silico neoantigen prediction, we developed ATLAS, a robust ex vivo platform that empirically identifies neoantigens to which a subject has already generated an immune response (12). With this HLA agnostic bioassay, each putative antigen is expressed individually in E. coli, with or without a co-expressed cytolysin to facilitate MHC class I or class II processing, respectively (13). The E. coli library is fed in an ordered array to autologous dendritic cells derived from each patient’s peripheral blood and incubated overnight with their T cells. If the T cells recognize their cognate antigen, they will secrete measurable cytokines. ATLAS has previously yielded novel antigens with clinical efficacy when administered as a vaccine against infectious diseases (14-16), but has not been previously applied to cancer patients, or to immunologically competent murine cancer models.

Here we report preclinical and clinical results demonstrating that ATLAS accurately identifies neoantigens that drive both stimulatory and inhibitory T cell responses to cancer, as defined by inflammatory cytokine secretion. Many identified neoantigens did not fit common selection criteria for in silico neoantigen selection. Therapeutic vaccination of mice with ATLAS-identified stimulatory neoantigens resulted in anti-tumor efficacy as a monotherapy. By contrast, vaccines that included even a single neoantigen associated with inhibitory responses in ATLAS led to accelerated tumor outgrowth and/or abrogation of vaccine-mediated protection. We have termed these inhibitory antigens “Inhibigens”; they are defined as antigens to which inflammatory T cell cytokine secretion is suppressed to levels below baseline. These studies
demonstrate the feasibility of using an ex vivo antigen detection method to formulate patient-specific cancer vaccines and demonstrate the potential importance of distinguishing between stimulatory and inhibitory antigens in a treatment or prevention setting.

Results

ATLAS: identification of neoantigens and Inhibigens in lung cancer patients

A cohort of nine lung cancer patients was recruited into an observational study to assess preexisting neoantigen-specific T cell responses using the ATLAS assay. Patient demographics, HLA haplotypes, and prior treatment are summarized in Table 1, Fig. S1A-B and Table S1, respectively. Tumor sequencing identified between 84 and 971 somatic variants per patient, with a median of 700. In total, 1,015 unique mutations were profiled: 934 variants for CD8+ T cell responses and 525 variants for CD4+ T cell responses (Table 1; Table S2). The median number of mutations classified as immunologically recognized stimulatory neoantigens based on the ATLAS assay was low, with 5% and 1% of the screened mutations for CD4+ and CD8+ T cells, respectively. Surprisingly, many neoantigen-specific T cell responses were inhibitory, defined as downregulating IFNγ and/or TNFα cytokine secretion to levels significantly below baseline controls. Inhibitory responses were observed to a median of 3% and 1% of mutations for CD4+ and CD8+ T cells, respectively (Fig. 1A, Table 1); we are terming these inhibitory antigens “Inhibigens.”

Using the developer’s recommended 2% cutoff (17), only 6% of the epitopes predicted by NetMHCPan and none of the epitopes predicted by NetMHCIIpan elicited a stimulatory T cell response in the ATLAS assay (Fig. 1B). Moreover, 32% of the neoantigens identified by ATLAS to elicit CD8+ T cell IFNγ and/or TNFα secretion were not predicted by algorithms. In this cohort of patients, 7% of the NetMHCPan-predicted antigens were identified as Inhibigens demonstrating that current algorithms are unable to distinguish between neoantigens and Inhibigens, as algorithms only predict peptide binding to specific MHC/HLA and are not designed to predict the immune response to the peptide. Therefore, these algorithms may result in the inadvertent prioritization of potentially deleterious targets. Next, common criteria used for in silico predictions were assessed to determine if any could enrich for mutations that elicited patient T cell responses in ATLAS. Neoantigens and Inhibigens identified using the ATLAS assay were not enriched for known cancer genes (Fig. 1C), or novel sequences (indels, frameshifts, neoORFs) preferentially over short variants (single nucleotide variants, SNVs; Fig. 1D), nor were all ATLAS-identified neoantigens expressed as determined by RNAseq analysis, which only measures genes that are actively transcribed at the time of collection and in the specific portion of tumor that is biopsied (Fig. 1E). Furthermore, there was no relationship between transcript abundance and antigenicity (Fig. 1F). The differential predicted affinity of the mutated versus wildtype antigen for the MHC molecule, measured by use of the differential agretoptic index (DAI), was not different for either stimulatory neoantigens or Inhibigens (Fig. 1G). Finally, we tested whether reducing the stringency of the netMHCPan cutoff would lead to predictions consistent with those detected by ATLAS. While reducing the binding affinity threshold did decrease neoantigens missed by the algorithm, the proportion of Inhibigens also increased (Fig 1H). Therefore, the ATLAS bioassay empirically identifies neoantigens in peripheral blood of cancer patients that are not predicted with in silico methods and distinguishes putative antigens based on their ability to stimulate or inhibit T cell responses ex vivo.
Characterizing T cell responses to neoantigens or Inhibigens in a murine model of melanoma

To determine if the neoantigens identified using ATLAS are biologically relevant, the ATLAS ex vivo assay was applied to the B16F10 murine melanoma model. Whole exome sequencing of B16F10 melanoma tumors resected from C57BL/6 mice identified 1679 nonsynonymous mutations, exceeding the 962 previously reported (18) and in line with more recent sequencing of B16F10 (Table S3; (19)). An ATLAS library expressing each individual mutation was constructed and used to screen CD8+ T cells from the spleens of tumor-bearing mice, resulting in the identification of 66 neoantigens and 57 Inhibigens (Fig. 2A; Table S3). A lead neoantigen candidate, Gal3St1P64A (galactose-3-O-sulfotransferase, Table S2), was selected for further study based on high IFNγ and TNFα secretion in multiple mouse ATLAS screens. While the Gal3St1P64A mutation has been previously identified in B16F10 tumors (18,19), neither immunogenicity nor efficacy has been described with formulations containing this sequence after vaccination.

When a vaccine containing three antigens – Gal3St1P64A and previously-identified M30 (MHC-II neoantigen) (18) and Trp2 (MHC-I tumor-associated antigen, TAA) (20) (Table S4) – was therapeutically administered with adjuvant (CpG, QS21, and 3D-PHAD) to tumor-bearing mice, tumor growth was either significantly delayed or completely abrogated compared to controls (Fig. 2B). Gal3St1P64A as a single antigen vaccine conferred some protection (Fig. S2), but a combination of all three antigens was necessary for maximal anti-tumor efficacy, supporting the concept that a multi-antigen, CD8+ and CD4+ broad-spectrum T cell-targeted vaccine is necessary for protection in this aggressive model (21). Of note, the formulation containing the ATLAS-identified Gal3St1P64A neoantigen was significantly more protective than the published efficacious combination containing M27 (MHC-I neoantigen) (Fig. 2B; (18)). T cell responses were generated to all vaccine antigens, with potent IFNγ responses measured to Gal3St1P64A (Fig. 2C). Cross-reactivity with wild-type Gal3St1 was not observed (Fig. S3). Vaccinated mice that showed no evidence of tumor growth were re-challenged with B16F10 on day 63. As compared to age-matched naïve controls, mice previously vaccinated with the Gal3St1P64A vaccine had negligible tumor growth, confirming the generation of durable protective immunity (Fig. 2D).

The detection of Inhibigens by the ATLAS screen suggests potentially deleterious antigen-specific immune modulation by T cells, the biological relevance of which was evaluated by therapeutic vaccination with a pool of 27-mer synthetic long peptides (SLPs) spanning four ATLAS-identified Inhibigens (Table S4). In tumor bearing mice, immunization with Inhibigen peptides led to a marked increase in tumor growth kinetics relative to mice that received adjuvant alone (Fig. 3A). Immune responses to Inhibigen peptide immunization, measured by IFNγ ELISpot assays, were lower than those to stimulatory neoantigens (Fig. S4). Flow cytometric analysis of progressing tumors revealed reduced T cell infiltration, particularly by CD8+ T cells, as compared to control tumors (Fig. S5). When the pool of Inhibigen peptides was added to a formulation containing M30 and Trp2, protection conferred by T cell responses to M30 and Trp2 was completely abrogated (Fig. 3B), suggesting that deleterious Inhibigen-specific responses can be dominant to protective responses. After deconvolution of the peptide pool to test each Inhibigen individually with M30 and Trp2, two Inhibigenes were identified as primarily responsible for reduced efficacy. In particular, the Inhibigen peptide spanning the Mmp9 frameshift mutation (Mmp9FS) completely abrogated protection (Fig. 3C). The Taar9C190W Inhibigen also dampened protection but to a lesser extent, whereas Abca17 and Asb14 Inhibigenes had no demonstrable effect on tumor kinetics. The pro-tumor effect of Mmp9FS immunization
correlated with a significant decrease in T cell IFN-γ secretion specific for protective M30 and Trp2 antigens administered in the same vaccine pool (Fig. 3D). In addition, CD8+ T cell infiltration into tumors was significantly diminished by Mmp9_Fs immunization (Fig. 3E-F; Fig. S6). Analysis of CD4+CD25+FOXP3+ cells in the spleens of mice therapeutically immunized with a vaccine containing the Mmp9_Fs SLP did not reveal significant cell number differences relative to mice that received the vaccine in the absence of Mmp9_Fs (Fig. 3G). Additionally, increases in FOXP3+ cells were not observed in the tumor microenvironment (TME) of Inhibigen-immunized mice by immunohistochemistry (IHC) (Fig. 3F). Combined, these data suggest that differential expansion of conventional T regulatory (Treg) cells did not account for Inhibigen-induced phenotypic differences. Interestingly, a marked decrease in F4/80+ and CD11c+ cells in the TME was observed in Inhibigen-immunized mice suggesting a differential effect on macrophage and/or dendritic cells in the tumor (Fig. 3F). Taken together, these data support the conclusion that the ATLAS approach detects both stimulatory and inhibitory antigens, and that including Inhibigenes in a vaccine may lead to detrimental effects including decreased efficacy in vivo.

The ATLAS approach in patients – analysis of immunogenicity in the GEN-009-101 clinical trial

A planned interim analysis was performed on subjects participating in a phase 1/2a clinical trial that was designed to assess the safety and immunogenicity of ATLAS-identified neoantigens in a personalized vaccine for patients with melanoma, head and neck squamous cell cancer (HNSCC), urothelial carcinoma (UC), or non-small cell lung cancer (NSCLC) who were without evidence of disease after initial therapy. Matched tumor and normal tissue from initial resection or biopsy were sequenced to identify the patient’s unique mutanome followed by ATLAS screening (Table S5). Neoantigens that elicited stimulatory CD4+ or CD8+ T cell responses were included in the vaccine, and Inhibigenes were excluded. Comprehensive ATLAS screening data across all patients is presented in Table S5, and a representative patient screen is shown graphically in Fig S7. In the patient shown, stimulatory neoantigens were identified in both T cell subsets, with one CD4+ neoantigen and 15 CD8+ neoantigens. In this patient, inhibitory responses were found in only the CD8+ T cell subset, whereas in other subjects, inhibitory responses were found in either one or both T cell subsets (Table 2, Table S5). As in the observational lung cancer cohort, there was no association of immunogenicity in ATLAS with DNA copy number, DAI, or mutation type (short variant versus neoOrf) (Fig. S8A-H). Although there was a trend towards increased RNA expression of neoantigens versus non-antigens or Inhibigenes, the correlation was low (Fig. S8E). Not surprisingly for patients with cancer, there was significant interpatient variability in ATLAS outcomes with respect to frequency of stimulatory neoantigens and Inhibigenes (Table 2). Application of NetMHCpan to patient-specific mutations was unable to predict most ATLAS-identified stimulatory neoantigens. Conversely, a number of Inhibigenes identified by ATLAS would have been included in a NetMHCPan-directed vaccine (Fig. S8H).

The clinical vaccine product, GEN-009, consists of 4 to 20 synthetic long peptides (SLPs) divided into 4 pools, with each pool containing 1 to 5 SLPs. A single pool was administered into each extremity combined with the adjuvant poly-ICLC (Hiltonol®, Oncovir). The vaccine was administered in a prime-boost schedule of 5 immunizations (Fig. S9). Eight patients were vaccinated. One patient developed recurrent disease during vaccine manufacturing, and therefore did not receive the vaccine [Pt D]. Interestingly, this subject had complete resection for stage 3A melanoma without further adjuvant therapy but had a predominance of
Inhibigens identified in their mutanome (Table 2). Patients for whom a vaccine was not feasible or who dropped out due to early progression were replaced. Supporting manufacturing feasibility, a GEN-009 personalized vaccine was generated for 100% of eligible patients and the median overall time from tumor collection to vaccination was less than 16 weeks. To date, thirty-seven vaccinations have been administered without a DLT; adverse events were consistent with those expected from the adjuvant alone and were self-limited. These consisted of grade 1 injection site reactions/pain, fatigue, chills, headache and influenza like illness, with a single occurrence of grade 2 pyrexia. There were no clinically significant laboratory abnormalities. No patients have experienced disease recurrence after vaccination with a median follow-up of 34 weeks (range 15-46 weeks), although one subject was diagnosed with a molecularly distinct second primary tumor while in the treatment period. Clinical follow-up of these patients is ongoing.

T cell responses to the GEN-009 vaccine were analyzed by dual-color fluorospot assays in pre- and post-vaccination samples. Pools of four overlapping peptides (OLP; 15-mer overlapping by 11aa) were synthesized for each neoantigen SLP represented in the vaccine. Total peripheral blood mononuclear cells (PBMCs) and sorted CD4+ or CD8+ T cells were evaluated for responsiveness to each of the individual immunized SLPs as well as vaccine pools. *Ex vivo* responses were assessed by IFNγ/GrB fluorospot assay. For the *in vitro* stimulation (IVS) assay, cells were expanded for 10 days with OLP pools, then assayed in an IFNγ/TNFα fluorospot assay. Comprehensive immunogenicity data for a single patient are shown in Figure 4A-C.

Modulation of neoantigen-specific CD4+ and CD8+ T cell responses after vaccination was apparent by both *ex vivo* (Panels A and B) and IVS (Panel C) fluorospot. The responses varied for each immunized peptide, in some cases increasing post immunization and in other cases decreasing for a particular analyte. After vaccination, all patients had CD4+ and CD8+ T cell responses to at least one peptide *ex vivo* (Fig. 4D, Table S6). Across the cohort, most subjects had T cell responses to a proportion of peptides included in their vaccine measurable *ex vivo* at baseline (Fig. 4D) and after IVS (Fig. 4E). Overall, there were immune responses detected to nearly all (99%) of the administered peptides (Fig. 4F, Table S6). *Ex vivo* neoantigen-specific CD4+ and CD8+ T cell responses were identified to 51% and 41% of peptides, respectively. In addition, IVS CD4+ and CD8+ T cell responses were observed against 87% and 59% of administered peptides, respectively. Responder analysis (statistical differences in magnitude post-vaccination compared to baseline) reveals that on day 50, by the IFNγ assay, the magnitude of PBMC and CD4+ T cell responses was statistically greater than responses at baseline for a median of 88% of SLPs; for CD8+ T cell responses, increases were statistically significant for 63% of the SLPs (Table S7). The TNFα results were similar, but with slightly lower medians. Overall, these data show that empirical selection of stimulatory neoantigens with ATLAS results in a greater proportion of immunogenic responses after vaccination than previously reported (8,9).
Finding therapeutic T cell targets has been critical to progress against cancer. The identification of relevant tumor-specific neoantigens holds the promise of improving cancer immunotherapy through broad expansion of tumor-expressed and immunogenic targets, but determination of which mutations are relevant for an individual patient has been elusive. While de novo neoantigen-specific vaccine responses may be important for successful immunotherapy (22), in silico neoantigen selection has yielded poor predictive value and provides little confidence that putative prioritized antigens are relevant to the individual patient’s HLA type and T cell repertoire. Moreover, the success of tumor-infiltrating lymphocyte (TIL) therapies shows that the pre-existing T cells can be protective if they are successfully expanded and otherwise augmented (reviewed in (23)). De novo responses also may carry additional risk of off-tumor toxicity as the T cells generated are novel to the patient. Here we describe the implementation of an empirical method to identify immunogenic tumor mutations using a biological assay customized for the patient. ATLAS comprehensively screens all tumor-specific mutations and identifies personalized neoantigens to which a patient’s T cells have already responded (i.e. pre-existing T cell responses). Importantly, to be detected by the ATLAS bioassay, identified neoantigens must have been effectively processed and presented in the context of the patient’s tumor for recall T cell responses to be generated. The ATLAS assay has successfully identified protective infectious disease antigens for use in candidate vaccines and immunotherapies (24-27). The ATLAS assay is also well suited for high-throughput and comprehensive screening of all somatic mutations in the setting of solid tumor cancers because ATLAS is HLA agnostic and inclusive of all genetic and ethnic backgrounds and does not rely on epitope predictions. In addition, ATLAS identifies whether the T cell response a patient generated to each of their neoantigens is potentially beneficial (stimulatory) or deleterious (inhibitory).

In the retrospective research cohort of nine patients with lung cancer, screening of peripheral blood T cells against respective tumor mutanomes revealed that approximately 10% of mutations were immunogenic (both CD4+ and CD8+ T cell subsets), and of these, 6% were newly discovered Inhibigens. The relative proportion of neoantigens was highly variable between subjects, confirming previous reports (28). By contrast, the observed proportions of neoantigens greatly exceed the neoantigen-specific response frequencies of 1-2% identified in TIL from tandem minigenes or in peripheral blood screens of PD1-sorted T cells. This discrepancy could be due to multiple factors. First, ATLAS libraries are built based on non-synonymous mutations (relative to germline) identified in DNA, whereas many other screens have filtered out mutations based on RNA expression prior to in silico selection (29). Our data suggest that this approach may remove some bona fide neoantigens as these analyses only measure RNA expression in the region of tumor biopsied and do not account for tumor heterogeneity. Conversely, it is possible that our screens identify neoantigens that were expressed in the tumor in the past but have since been immunoedited. Next, TIL approaches require sufficient tumor material to facilitate T cell outgrowth from resected tumor fragments. It is possible that not all neoantigen-specific T cells will migrate out of the tumor and expand during this process thereby resulting in a perceived lower response breadth. Indeed, a recent publication showed that addition of 4-1BB agonistic antibody to tumor explants resulted in a
greater proportion of neoantigen-specific T cell responses emerging from tumors (30). Third, multimer approaches are limited in allele coverage and are dependent on algorithmic predictions for selection (31). Finally, peptide-based approaches require epitope prediction and exogenous loading of MHC class I or class II epitopes for presentation, whereas the ATLAS approach utilizes native intracellular antigen processing and presentation.

For each of the data sets presented here, when neoantigens identified by ATLAS were compared with predicted epitopes based on NetMHCpan algorithms (17,32) there was minimal overlap. In the retrospective lung cancer cohort, for example, the MHC-I prediction algorithm had a 13% positive predictive value relative to ATLAS outputs. When the algorithm predicted an antigen that was confirmed by ATLAS, approximately half of the time the response was identified as inhibitory, a biological response that cannot currently be predicted by an algorithm. In addition, 32% of the neoantigens identified by ATLAS were not in silico predicted. NetMHCIIpan was even less accurate for MHC-II where the algorithm had a 3% positive predictive value (all were characterized by ATLAS as Inhibigens), and a 93% false negative rate. The poor predictive value of epitope prediction algorithms based on affinity is not surprising; indeed, van Rooij et al. (33) showed that less than 1% of predicted high-affinity binders from a melanoma patient were recognized by the patient’s T cells. Moreover, a mass spectrometry approach recently revealed that weakly binding neoepitopes could be protective tumor antigens in mouse models (34), confirming that vaccines designed based upon predicted high affinity binding epitopes may miss many appropriate antigens and include potentially unsuitable targets. Additionally, in order to prioritize predicted epitopes for vaccination using algorithms, supplementary selection criteria are commonly used, such as selecting mutations in known cancer genes or those that generate novel sequences such as insertions or deletions, or using criteria such as expression levels, DNA copy number, or DAI (reviewed in (35)). In the current study no enrichment for neoantigens or Inhibigens was observed by these criteria. There was a slight trend for increased RNA expression of neoantigens, but the differences were small with a large overlap in distributions. We acknowledge that only one prediction algorithm was used in this study and there are others available for public or private use that may yield different outcomes. In addition, multiple groups are trying to improve on existing algorithms by using mass spectrometry and mono-allelic cell line approaches (34,36,37). Despite progress in the various in silico approaches, our data suggest that the heterogeneity of MHC, the complex biology of antigen processing, presentation, T cell responsiveness, and the context in which T cells are educated to mutations during cancer initiation and progression, are far more complex than can be currently modeled in silico.

The complexity of neoantigen identification is exemplified by the detection of Inhibigen responses in our study. In ATLAS, these responses are characterized by the reduction of IFNγ and/or TNFα secretion to levels that are statistically below baseline controls. As Inhibigen responses have also been found in screens of non-mutated tumor antigens and pathogen proteins (38,39), these responses do not appear to be unique to cancer mutations. The biological relevance of Inhibigen-specific responses was demonstrated in the B16F10 melanoma model, where inclusion of ATLAS-defined Inhibigen peptides to an otherwise-protective vaccine abrogated efficacy, and in some cases, accelerated tumor progression. Corresponding loss of neoantigen-specific T cell immunogenicity to protective antigens was observed, as well as reduced tumor infiltration by CD8+ T cells, macrophages, and dendritic cells. Vaccine-augmented tumor growth, rather than protection, has been reported in other mouse models and attributed to tolerization of anti-tumor response (40,41).
Further investigation is required to reveal how ATLAS-identified Inhibigens exert pro-tumor effects and determine whether the phenotype is a property of the Inhibigen itself, or whether T cells are aberrantly educated to Inhibigens in the context of the tumor. Several possibilities exist: 1) Inhibigen-specific Tregs may be suppressing antitumor immune responses. Tregs are functionally and phenotypically heterogeneous and can act through a number of mechanisms, including production of inhibitory cytokines, cytolysis, metabolic disruption of effector T cells, and/or inhibition of dendritic cell maturation and function (42). While the broader class of Tregs cannot be fully discounted at this time, simple induction of classical Tregs (CD4+CD25+FoxP3+) is unlikely, as these Tregs were not more abundant in the TME of Inhibigen-immunized mice relative to controls. Moreover, with ATLAS, Inhibigens are commonly identified in the CD8+ T cell subset. 2) Inhibigens might modulate myeloid-derived cell function (43). Monocyte-derived suppressor cells (MDSCs) are also capable of suppressing effector T cell responses; however, Inhibigens are identified in ATLAS in the context of a defined culture containing uniform MDDCs and sorted T cells during a brief overnight exposure. The differentiation of MDDCs to MDSCs in this short timeframe is unlikely. 3) Effector T cells responding to Inhibigens could be driven into a suppressive state. T cell dysfunction due to persistent antigen stimulation of the TCR is a common feature of cancer, and it is possible that Inhibigens induce tolerance through this mechanism (44). However, it is unclear how T cell dysfunction of an Inhibigen-specific cell could suppress effector T cells against other anti-tumor antigens in trans. Alternatively, regulation of downstream TCR signaling through inhibition of protein kinase or phosphatase activity has been shown to disrupt T cell activation (45), and Inhibigens could regulate these pathways.

To distinguish between these possibilities or uncover novel mechanisms of inhibition, future studies will explore the presence of inhibitory cytokines (e.g., IL-10, TGFβ, and IL-35) in various cell subsets after in vitro and in vivo exposure to Inhibigens. In addition, it will be critical to map the MMP9FS minimal inhibitory epitope, which will enable tetramer development and characterization of cytokine profiles and transcriptomic patterns of purified Inhibigen-specific T cells. Inhibigen identification and characterization in additional syngeneic mouse tumor models will also be explored; however, the frequent identification of Inhibigens in many human screens underscores their broad relevance. We propose that T cells responding to Inhibigens, or the antigen presenting cells that display them, can impact the local and systemic immune environment, leading to local changes in the TME as well as tumor growth kinetics; this accentuates the importance of utilizing ex vivo assays to define and exclude such antigens from any personalized cancer vaccine or cell therapy.

GEN-009 is a personalized cancer vaccine that includes only ATLAS-identified neoantigens and excludes Inhibigens. Analysis of the initial cohort of enrolled patients in our Phase 1 clinical trial (NCT03633110) showed that generation of GEN-009 vaccine was consistently feasible and well-tolerated. All vaccinated patients had detectable T cell immune responses to the neoantigens in their vaccine, including immune responses overall against 99% of all immunized peptides, which is a remarkable and unprecedented result in the field (8,9,46). Broad CD4+ and CD8+ T cell responses across multiple neoantigens were generated, including CD8+ T cell responses that were measurable directly ex vivo. Both outcomes are notable in comparison to previously reported first-in-human, in silico-selected neoantigen vaccines (8,9) in
which *ex vivo* CD8$^+$ T cell responses were undetectable, and the proportion of peptides to which responses were measured was approximately 60% after *in vitro* stimulation. These prior neoantigen vaccine studies could neither identify nor exclude Inhibigens with their *in silico* approaches. Notably, if Inhibigens were included in a cancer vaccine, they would likely appear as undetectable in an IFNγ ELISpot analysis. The GEN-009-101 study continues to evaluate the GEN-009 vaccine, excluding Inhibigens, in combination with standard-of-care immunotherapy regimens.

In summary, the translational and clinical data presented here demonstrate the feasibility of a high-throughput personalized approach to identifying mutation-associated neoantigens in murine models and cancer patients. Administration of a vaccine optimized via selection of neoantigens with ATLAS should amplify pre-existing immunity, create *de novo* responses to the same neoantigens, and allow expansion of targets via epitope spread. The ATLAS approach has unique advantages as it identifies both stimulatory and novel inhibitory antigens (Inhibigens). We hypothesize that the proportion of Inhibigen- to neoantigen-specific T cell responses may correlate with clinical prognosis and are currently exploring this in a prospective study. It is possible that these inhibitory T cell responses are associated with observations of resistance or hyper-progression in some subjects treated with ICI (reviewed in (47)); however, our data do not support dysregulation of PD-1$^+$ Tregs as was recently reported (48). If the deleterious impact of Inhibigens by therapeutic vaccination in a mouse model translates to humans, then it is crucial to identify and exclude these Inhibigens from cancer immunotherapies. In support of this empirical antigen selection approach, a pre-planned interim analysis of the first cohort of patients enrolled in the GEN-009-101 clinical trial confirmed that the stimulatory antigens identified via ATLAS were *bona fide* immunogenic neoantigens. Overall, Genocea’s ATLAS platform provides critical information about a patient’s individual neoantigen immunity and could enable cancer immunotherapies that augment a patient’s pre-existing anti-tumor response and improve clinical outcomes.
Materials and Methods

Study Design

The objectives of these studies were to explore the peripheral T cell responses to tumor mutations in human subjects and in mouse models. Our hypothesis was that unbiased measurement of T cell responses to each mutation in a subject’s tumor would yield more accurate and biologically relevant information about neoantigen specificities than the in silico methods commonly used for neoantigen prediction. To this end, we recruited cancer patients for an observational study, explored the phenotype of inhibitory and stimulatory T cell responses in a mouse model, and finally began a Phase 1/2a clinical trial to treat cancer patients with the GEN-009 immunotherapy. Power calculations were performed for group sizes in the mouse model.

ATLAS Process

The ATLAS assay has been used extensively for screening of T cell responses in human subjects, with detailed methods described previously (12,24,25,27,49,50).

Identification of tumor-specific mutations

Genomic DNA from FFPE tumor sections and matched saliva was isolated and subjected to whole exome capture and paired-end sequencing and RNAseq using the Nova-seq platform. Sequencing and data analysis were performed at Personalis, who have demonstrated accuracy and precision of their experimental protocols, with a sensitivity of 99% for single nucleotide variants (false positive 3%) and 94% for indels (3% false positive rate). The coverage was 150X for normal and 300X for tumor. Somatic variants were called from the exome reads and reference human genome using hs37d5 and BWA and STAR alignment tools, variants were called using MuTect, Verdict, and Fusion Catcher. Genomic DNA extracted from B16F10 tumors raised in C57BL/6 mice was sequenced using whole exome sequencing with HiSeq2500 platform. 100bp paired-end sequencing was performed at Otogenetics (Atlanta, GA) and sequences were aligned against the mm10 reference genome. The coverage was 120X. The B16F10 tumor was then compared against germline C57BL/6 DNA from mouse tail to identify tumor-specific mutations using Strelka and Verdicts. The original B16F10 cell line (ATCC, passage 6) was also sequenced to confirm presence of these same mutations. Variant annotation was performed using SnpEff. Data set: NCBI SRA accession # PRJNA662658.

Discovery of neoantigens

For the lung cohort and murine model studies, 399bp DNA fragments encoding each of the identified mutations were synthesized (Genewiz or Twist Biosciences) and cloned into a proprietary plasmid (pGEN4) with each fragment ligated in-frame with a DNA sequence encoding the SIINFEKL epitope from chicken ovalbumin. In the GEN-009-001 study, 123bp DNA fragments encoding each identified mutation were synthesized (Genewiz) and cloned into a proprietary vector (pGEN132) containing a red fluorescent protein (Fresno RFP, Atum Bio) coding sequence in-frame. Clones expressing the first 399 or 123 bp (depending on use of pGEN4 or pGEN132, respectively) of green fluorescent protein from Branchiostoma lanceolatum (bIFP-Y3; abbreviated NG) were used as an irrelevant negative control antigen. Sequence verified clones were transformed into E. coli containing a separate plasmid encoding a cytoplasmic variant of listeriolysin O (cLLO) for screening of CD8+ T cells or lacking cLLO for...
CD4+ T cells (13). Expression was induced using IPTG and verified either by Western blot or by detection of RFP fluorescence. Clones and negative controls were fixed with formalin, washed, normalized, then randomly re-arrayed in duplicate in 384-well plates. Plates were stored at -80°C until used (13).

PBMC samples were collected by either venipuncture or apheresis, enriched via density gradient centrifugation, and viably frozen within eight hr. Frozen PBMC were thawed and sorted using microbeads (Miltenyi) to enrich for monocytes and to separate the CD4+ and CD8+ T cells. The monocytes were cultured with rhGM-CSF and rhIL-4 for 7d to differentiate into monocyte-derived dendritic cells (MDDC). The CD4+ and CD8+ T cells were separately expanded non-specifically for one week using anti-CD3 and -CD28 microbeads (Invitrogen) and low dose IL-2. Due to cell limitations, not all mutations could be screened against both T cell subsets for all patients. Under those circumstances, CD8+ T cells were prioritized.

For screening of ATLAS libraries, autologous MDDC were added to individual wells of the arrayed E. coli plates, with a target of 5,000 cells per well. Plates were incubated at 37°C 5% CO2 for 2h to facilitate antigen uptake and processing. After washing, 80,000 autologous T cells (either CD4+ or CD8+) were added to each well and incubated overnight. In addition to the negative controls expressing blFP-Y3 (NG), PMA/Ionomycin mitogen (81nM and 1.34 uM, respectively) was added as a positive control for T cell activity. Supernatants were transferred to new 384-well plates and frozen at -20°C until analyzed for IFN-γ and TNFα cytokine levels by Meso-Scale Discovery assay (MSD). Briefly, supernatants and calibrators were added to pre-coated MSD plates and incubated. After washing, the SULFO-TAG-conjugated detection antibody was added, and after washing read buffer was added followed by analysis with an MSD instrument.

The murine neoantigen screens were performed as described above, with the exception that only CD8+ splenocytes were tested, and the RAW309 Cr.1 macrophage cell line (ATCC TIB-69) was used as APC. The RAW309 cells were incubated overnight and then the ATLAS library added the next day. The original ATLAS screen interrogated the entire mutanome, and two repeat screens evaluated a subset of 174 clones based on the initial data.

Responses were identified based on mean and standard deviation estimates from cytokine levels of both the negative control (NG) and replicate test wells from MSD plates based on defined standards. Data from MSD plates are first log transformed (natural log) prior to analysis. Any test wells with responses that do not fall within the linear range of the standard curve are excluded. Given the approximate normal distribution of the data, a span of 2 standard deviations from the mean represents a 95% confidence interval for non-response. Therefore, a threshold of 2 standard deviations above the mean was used for identification of neoantigens with the expectation of a false positive rate of 5%. Z-transformed data based on calculated mean and standard deviations are used to identify and visualize antigen calling from MSD plate data.

Cell lines

B16F10 cells were obtained from ATCC (Manassus, VA), expanded to 6 passages, and frozen as a stock for use across mouse studies. Thawed cells were cultured for up to 4 days without passaging prior to mouse injection. Cells at final passage prior to freezing tested negative for mycoplasma by Lonza (Basel, Switzerland) MycoAlert detection kit (2018) and negative for all infectious disease by Charles River Research Animal Diagnostic Services (Wilmington, MA).
Whole exome sequencing of the final frozen stock was performed by Otogenetics (Atlanta, GA) confirming cell line identity (2018).

Mice

Female 6-8 week old C57BL/6 mice were obtained from Jackson Laboratory (Bar Harbor, ME) for use in mouse studies under the IACUC approved protocol #18-0625-1: Evaluation of the effects of vaccination in mouse tumor models.

Murine tumor models

Synthetic long peptides (27aa) were synthesized by Genscript (Piscataway, NJ), New England Peptide (Gardner, MA) or 21st Century Biochemicals (Marlborough, MA). 1 x 10^5 B16F10 melanoma cells (ATCC CRL-6475) were inoculated subcutaneously into the flanks of 6-8 wk female C57BL/6 mice. Tumor-bearing mice were randomized then injected s.c. in the tail base on days 3, 10 and 17 with formulations containing 50 μg per SLP, 5 μg CpG ODN1826 (Invivogen, San Diego, CA), 5 μg 3DPHAD (Avanti, Alabaster, Alabama) and 25 μg QS21 (San Diego, CA). Tumor sizes were measured every 3 days until ≥2000 mm^3 and daily until tumor ≥2500 mm^3, upon which mice were euthanized. For immunogenicity studies, mice were immunized on day 0 and 7 in the absence of tumor and euthanized for splenocyte analysis on D14.

Enzyme linked immunospot (ELISpot) assay for the measurement of IFNγ from mouse T cells pulsed with antigen has been previously described (51,52). Stimulants of media alone, PMA/Ionomycin (200ng/ml; 1μg/mL) or OLPs (15mers overlapping by 11aa; 1μg/peptide) were prepared. Stimulants and cells were co-incubated for 16 hours at 37°C after which IFNγ secretion was detected using anti-IFNγ capture antibody (10μg/mL clone AN18; Mabtech) and anti-IFNγ-biotin (1μg/mL clone R4-6A2; Mabtech). All spot forming cells (SFC) were normalized to 1x10^6 splenocytes.

Tumor infiltrating lymphocytes were isolated using enzymatic digestion with collagenase I (100U/mL) (Worthington), collagenase IV (500U/mL) (Sigma) and DNAse (200μg/mL) (Sigma). After digestion, single cell suspensions were filtered through a 70μm filter, and lymphocytes sorted using CD45 microbeads (Biolegend, Clone 30F11, STEMcell isolation kit). Cells were stained in 5% PBS in PBS. Antibodies included: fixable viability dye (BD), CD19 (6D5, Biolegend), NK1.1 (PK136, Biolegend), CD4 (RM4-5, ThermoFisher), CD8 (53-6.7, Biolegend), CD25 (PC61, Biolegend) CD3 (17A2, Biolegend), and CD11c (D1V9Y, 1:350) from Cell Signaling Technology (Danvers, MA). All washes were performed with TBS-Tween20. Slides were incubated with polink-1 AP rabbit secondary antibody and subsequently with permanent red chromogen dye from Origene (Rockville, MD).
Tissues were counterstained with hematoxylin and mounted with aqueous mounting medium. Images were acquired on the EVOS FL Auto imaging system (Life Technologies) and prepared in ImageJ (NIH) software.

Vaccine Manufacture

ATLAS-prioritized neoantigens were manufactured as SLPs (27aa) under cGMP conditions, formulated in physiological buffer and frozen at -20°C. Each personalized vaccine consisted of between 4-20 SLPs divided into 4 pools, with each pool containing 1-5 SLPs. The specific number of SLPs in each patient’s vaccine was dependent on the number of neoantigens identified by ATLAS and the number that could be synthesized and formulated. Peptides were combined with poly-ICLC (Hiltonol) for subcutaneous administration.

Clinical Study Design

GEN-009-101 is a first-in-human study evaluating the safety, immunogenicity, and anticancer activity of the GEN-009 vaccine in patients with solid tumor malignancies. The clinical trial was registered with designation NCT03633110 (https://clinicaltrials.gov/ct2/show/NCT03633110). Part A, for which we now report preliminary results, enrolled patients without evidence of disease after initial therapy. The primary endpoint is safety and immunogenicity of administered peptides. The vaccine was injected subcutaneously for 5 doses over 6 months on Days 1, 22, 43, 85 and 169 (Fig. S9). The clinical sites enrolling the study obtained written informed consent from patients via an IRB approved consent form and the trial was conducted in accordance with recognized ethical guidelines under the supervision of an institutional or central review board.

Patients

Part A was open to adults with cutaneous melanoma, non-small cell lung cancer (NSCLC), squamous cell carcinoma of the head and neck (SCCHN), or urothelial carcinoma (UC), who had completed standard treatment (e.g., surgical resection, adjuvant therapy, and/or radiation) with curative intent. Additional eligibility requirements included Eastern Cooperative Oncology Group (ECOG) performance status of 0 or 1 and adequate hematologic, liver and kidney function. Exclusion criteria included active autoimmune disease, primary immune deficiency, or immunosuppressive therapies within 28 days prior to study.

Procedures and treatment

All patients signed written informed consent after the nature and possible consequences of the studies were explained, and before the conduct of any protocol-specific procedures. Leukapheresis was performed at baseline and day 50 for the ATLAS process and immunogenicity assessments. In addition, whole blood was collected at additional time points for immunogenicity. Disease assessment, computed tomography (CT) or magnetic resonance imaging (MRI), was performed within 4 weeks prior to GEN-009 dosing to rule out disease recurrence. Patients with urothelial carcinoma who had not had a complete cystectomy additionally underwent urine cytology and, if appropriate, cystoscopy to verify disease status. Disease-free survival is being assessed every 12 weeks through the first year of treatment, and every 26 weeks thereafter. Safety measurements performed throughout the vaccine treatment period included evaluation of adverse events, clinical laboratory tests, physical examination, vital signs, and ECOG status. Adverse events are graded according to the National Cancer Institute (NCI) Common Terminology Criteria for Adverse Events (CTCAE) v5.0.
Cellular immune responses to vaccination:

In vitro stimulation of PBMCs. PBMCs were stimulated in a 24-well plate at 5×10^6 cells/well with 1 µg each peptide/mL in the presence of IL-7. On Day 3, 6 and 9, IL-2 was added. After 10d, T cells were sorted for CD4$^+$ or CD8$^+$ T cells using magnetic bead isolation (Miltenyi) before plating for the fluorospot assay.

Fluorospot assays. 96-well pre-coated human IFN-γ/GrB (ex vivo) or IFN-γ/TNFα (IVS) fluorospot kits (Mabtech) were used. OLPs, (15mers overlapping by 11 aa) were synthesized for all vaccinated SLPs. For the ex vivo fluorospot, 2 x 10^5 PBMC or 2 x 10^5 CD4- or CD8-depleted PBMCs were added to each well with 1 µg/mL each OLP and incubated for 48h. For the IVS fluorospot, 2 x 10^4 CD4$^+$ or CD8$^+$ T cells, 5 x 10^3 lymphocyte-depleted PBMCs and 1 µg/mL each OLP was added and incubated for 24h. Plates were washed, then detection antibody added, followed by anti-BAM-490 and SA-550 (Mabtech). After washing, fluorescence enhancer was added, then the plates were read on the AID iSpot Reader System (AID).

Statistics

ATLAS screens

After bias correction and failure removal, the amount of cytokine production per well was normalized to the multiple redundant measurements of the negative control neon green (NG). Only cytokine measurements that fell within the linear range of the standard curves run on the same plate were included in analyses. A candidate antigen was defined as stimulatory or inhibitory if the cytokine production was 2X the median average deviations above or below the median of the negative controls, respectively.

Murine ATLAS screen

In addition to B16F10 ATLAS clones, clones expressing mouse actin a housekeeping gene for which mice should not have any T cell reactivity were included as negative control antigen arrayed randomly across the plates. For each MSD screening plate and cytokine, a multilevel model was fit to the log-transformed data. The estimated mean response to the negative control was subtracted from the mean response to each candidate neoantigen and the estimated residual standard deviation was divided by this difference to yield a normalized log cytokine concentration which can be interpreted as standard deviations above or below the background control. Values greater than 2 were deemed stimulatory responses and values less than -2 were deemed inhibitory responses.

GEN-009 Fluorospot assays. A response was defined as positive if the mean SFC exceeded the LOD and if the p-value between the test and negative control was ≤ 0.05 by the DFR(eq) test (53).
References

Acknowledgments: We are grateful to the patients who consented to participate in our observational study and clinical trial. We also thank Genocea’s extraordinary clinical operations team; Jessica Price and Rich Hernandez; and manufacturing team including Narinderjeet Singh and Manish Jain. We also thank the ATLAS team including Louisa Dowal, Tulin Dadali, Crystal Cabral, Michael O’Keeffe, Christopher Warren, James Loizeaux, Mariya Croll, James Perry, Anna Lyubetskaya, Erick Donis, and Matthew Lanchantin; the Translational Immunology team including Mara Shainheit, Tyler Fenske, Megan Croshier, Devin Champagne, Gabriella Santone, and Syukri Shukor; the Development team including Stephanie Rinaldi, Sanmit Adhikari, Osaruese Odeh, Peri Matatia, Simran Singh, Dylan Sheehan, and Cindy Nguyen.
Author contributions: RBC, PT, MLJ, MG, MNS, and UNV are clinicians who consented and enrolled patients into the clinical trial. They also designed the clinical trial protocol with AD, CD, EMJ, LKM and TD. LKM, PA, and JBF designed and analyzed the immunogenicity assays for the GEN-009-101 clinical trial. WB, JJF and JBF designed and analyzed the research NSCLC cohort experiments. VV and ET designed and performed bioinformatic analyses of mutations, HLA types, ATLAS responses and epitope predictions. HL, HS, VLD, KF, JF, KW, DD, PC, CD, EJ, and JBF designed, performed, and analyzed the mouse screening and tumor challenge experiments. HL, LKM, JBF, PC, and TD drafted the manuscript.
Table 1. HLA types, Mutations, and ATLAS responses for the research cohort

<table>
<thead>
<tr>
<th>HLA haplotypes</th>
<th>MHC class I</th>
<th>MHC class II</th>
<th>Mutations</th>
<th>Stimulatory responses</th>
<th>Inhibitory responses</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>S*</td>
<td>NS*</td>
<td>CD8</td>
</tr>
<tr>
<td>USO-004</td>
<td>A 01:01, 02:01</td>
<td>B 08:01, 15:01</td>
<td>C 07:01, 04:01</td>
<td>DPAl01:03,01:03; DPBl00:01,03:01; DQA101:02,01:02; DQBl06:02,04:02; DRA101:01, 01:01; DRBl15:01,08:01</td>
<td>700</td>
</tr>
<tr>
<td>USO-007</td>
<td>A 02:01, 11:01</td>
<td>B 35:01, 15:01</td>
<td>C 03:04, 04:01</td>
<td>DPAl01:03, 03:01; DPBl04:02, 03:01; DQA101:02, 01:02; DQBl06:04, 05:02; DRA101:01, 01:01; DRBl13:02, 01:01</td>
<td>971</td>
</tr>
<tr>
<td>USO-008</td>
<td>A 01:01, 24:02</td>
<td>B 08:01, 15:01</td>
<td>C 03:03, 07:01</td>
<td>DPAl01:03, 01:03; DPBl39:01, 04:01; DQA105:01, 05:01; DQBl03:01, 02:01; DRA101:01, 01:01; DRBl11:01, 03:01</td>
<td>170</td>
</tr>
<tr>
<td>USO-010</td>
<td>A 02:01, 02:05</td>
<td>B 07:05, 50:01</td>
<td>C 06:02, 15:05</td>
<td>DPAl01:03, 01:03; DPBl03:01, 04:01; DQA102:01, 03:01; DQBl03:02, 02:01; DRA101:01, 01:01; DRBl04:05, 07:01</td>
<td>734</td>
</tr>
<tr>
<td>USO-013</td>
<td>A 03:01, 33:03</td>
<td>B 15:16, 35:01</td>
<td>C 04:01, 14:02</td>
<td>DPAl03:02, 03:02; DPBl04:01, 17:01; DQA101:02, 02:01; DQBl05:01, 02:01; DRA101:01, 01:01; DRBl13:02, 07:01</td>
<td>765</td>
</tr>
<tr>
<td>USO-027</td>
<td>A 11:01</td>
<td>B 14:02, 51:01</td>
<td>C 03:03, 08:02</td>
<td>DPAl01:03, 01:03; DPBl02:01, 34:01; DQA101:03, 05:01; DQBl06:01, 03:01; DRA101:01, 01:01; DRBl15:02, 11:01</td>
<td>84</td>
</tr>
<tr>
<td>USO-028</td>
<td>A 24:02, 68:01</td>
<td>B 35:03, 51:01</td>
<td>C 04:01, 15:02</td>
<td>DPAl01:03, 01:03; DPBl02:01, 04:01; DQA101:03, 01:03; DQBl06:11, 06:11; DRA101:01, 01:01; DRBl15:01, 13:01</td>
<td>931</td>
</tr>
<tr>
<td>USO-031</td>
<td>A 02:01, 02:05</td>
<td>B 50:01, 51:01</td>
<td>C 06:02, 14:02</td>
<td>DPAl01:03, 01:03; DPBl03:01, 02:01; DQA101:03, 02:01; DQBl06:03, 06:03; DRA101:01, 01:01; DRBl13:01, 07:01</td>
<td>215</td>
</tr>
<tr>
<td>USO-041</td>
<td>A 01:01, 03:01</td>
<td>B 07:02, 08:01</td>
<td>C 07:01, 07:02</td>
<td>DPAl01:03, 01:03; DPBl02:01, 04:01; DQA101:02, 03:01; DQBl06:02, 03:02; DRA101:01, 01:01; DRBl04:04, 15:01</td>
<td>222</td>
</tr>
</tbody>
</table>

Median | 700 | 97 | 1% | 5% | 1% | 3% |

*S = synonymous; NS = non-synonymous
Table 2. Enrolled Patients and ATLAS Results

<table>
<thead>
<tr>
<th>Pt</th>
<th>Age</th>
<th>Sex</th>
<th>Ethnicity</th>
<th>Tumor Type</th>
<th>Prior Therapy^</th>
<th>TMB (mutations/ Mb)</th>
<th>Neoantigens</th>
<th>Inhibigens</th>
<th>Peptides in vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>53</td>
<td>F</td>
<td>White</td>
<td>Squamous NSCLC</td>
<td>Surgery/ Carbo/Etop</td>
<td>0.18</td>
<td>6</td>
<td>0</td>
<td>10*</td>
</tr>
<tr>
<td>B</td>
<td>73</td>
<td>M</td>
<td>White</td>
<td>Urothelial carcinoma</td>
<td>Surgery/Mito Cis/Gem/Pembro</td>
<td>0.9</td>
<td>16</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>C</td>
<td>82</td>
<td>M</td>
<td>White</td>
<td>Melanoma</td>
<td>Surgery/Pembro/Ipi</td>
<td>8.16</td>
<td>199</td>
<td>41</td>
<td>16</td>
</tr>
<tr>
<td>D</td>
<td>48</td>
<td>M</td>
<td>White</td>
<td>Melanoma</td>
<td>Surgery</td>
<td>3.09</td>
<td>43</td>
<td>94</td>
<td>Recurrence prior to vaccination</td>
</tr>
<tr>
<td>E</td>
<td>64</td>
<td>M</td>
<td>White</td>
<td>Urothelial carcinoma</td>
<td>Surgery/ Cis/Gem</td>
<td>0.88</td>
<td>18</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>F</td>
<td>66</td>
<td>F</td>
<td>White</td>
<td>NSCLC adenocarcinoma</td>
<td>Surgery</td>
<td>0.94</td>
<td>16</td>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>G</td>
<td>57</td>
<td>M</td>
<td>White</td>
<td>Bladder</td>
<td>Surgery</td>
<td>2.34</td>
<td>24</td>
<td>104</td>
<td>13</td>
</tr>
<tr>
<td>H</td>
<td>64</td>
<td>F</td>
<td>White</td>
<td>Urothelial carcinoma</td>
<td>Surgery/ Cis/Gem</td>
<td>0.44</td>
<td>14</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>I</td>
<td>68</td>
<td>F</td>
<td>White</td>
<td>Urothelial carcinoma</td>
<td>Surgery/Gem</td>
<td>0.12</td>
<td>0</td>
<td>3</td>
<td>No stimulatory antigens</td>
</tr>
<tr>
<td>J</td>
<td>68</td>
<td>M</td>
<td>White</td>
<td>Bladder</td>
<td>Surgery</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Insufficient tumor</td>
</tr>
<tr>
<td>K</td>
<td>68</td>
<td>M</td>
<td>White</td>
<td>SCCHN</td>
<td>Cetux/XRT</td>
<td>3.19</td>
<td>15</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>L</td>
<td>76</td>
<td>M</td>
<td>White</td>
<td>SCCHN</td>
<td>Carbo/taxol/ XRT</td>
<td>0.5</td>
<td>2</td>
<td>1</td>
<td>Insufficient antigens</td>
</tr>
</tbody>
</table>

*2 peptides each for 4 deletion fragments positive in ATLAS

^Carbo = carboplatin, Etop = etoposide, Mito = mitomycin-C, Cis = cisplatin, Gem = gemcitabine, pembro = pembrolizumab, ipi = ipilimumab, Cetux = cetuximab, XRT = radiation therapy
Figure legends:

Figure 1. CD4⁺ and CD8⁺ T cell responses in ATLAS and the neoantigen characteristics
A, Normalized cytokine responses for IFNγ and TNFα across nine lung cancer subjects and 1,015 unique mutations profiled. Each point represents the average (of 2) observed cytokine response for a given analyte for each mutation profiled in ATLAS normalized to the negative control responses. Horizontal line indicates the statistical cutoff for determination of stimulatory (blue) or inhibitory (burgundy) T cell responses. B, Venn Diagrams comparing ATLAS-identified T cell responses with NetMHCpan 4.0 (934 putative neoantigens) or NetMHCIIpan 4.0 (525 putative neoantigens) predictions using a 2% cutoff. Blue circles represent neoantigens and burgundy circles represent Inhibigens. C, and D, Relative proportion of neoantigens (blue), Inhibigens (burgundy), and non-antigenic (grey) mutations classified by if the mutation is in a known cancer gene (C) or a short variant or a neoORF (D). E, Classification of responses by if the mutation was expressed as determined by RNAseq analysis. F, Classification of responses by copy number. Y-axis represents log transcripts per million, X-axis indicates response determination by ATLAS. G, Minimum predicted affinity (nM) plotted against the maximum calculated differential agretopicity index (DAI) for each SNV. H, The concordance between ATLAS and netMHCpan / netMHCIIpan algorithms for different algorithm thresholds. The red line shows the false positive rate defined as percent of Inhibigens classified as antigens by the algorithm. The blue line shows the false negative rate which is defined as the percent of neoantigens missed by the algorithm.

Figure 2. ATLAS identifies neoantigens and Inhibigens that impact tumor progression in mice
A, Normalized cytokine responses for IFNγ (top) and TNFα (bottom) to B16F10 candidate neoantigens in the ATLAS assay. Each point represents the average observed cytokine response for each mutation profiled in ATLAS. Horizontal lines indicate statistical cutoff for determination of neoantigen (blue) or Inhibigen (burgundy) T cell responses. B, Mean tumor growth kinetics after therapeutic immunization with indicated neoantigen peptide vaccine ± adjuvant (CpG (5µg), 3DPHAD (5µg), QS21 (25µg) on days 3, 10, and 17 (n ≥ 9 per group; ulcerated tumors censored from analysis). P-values at day 35 determined by one-way ANOVA. C, Antigen-specific immune response to neoantigen peptides by ELISpot analysis on mouse splenocytes on day 17. Each symbol represents the response from an individual mouse. D, Previously vaccinated mice that did not develop measurable tumors from Gal3St1+M30+Trp2 (n=5) and M27+M30+Trp2 (n=2) groups were re-challenged with B16F10 cells on day 63 post-primary challenge and mean tumor volume and SEM are plotted over time. Mice that developed small tumors (<100mm³) between day 35 and day 62 were excluded from re-challenge. Naïve age-matched mice (n=9) were challenged as a control. P-value determined by T-test at day 81.

Figure 3. Vaccination with ATLAS-identified Inhibigens leads to accelerated tumor growth and abrogated efficacy of an otherwise protective vaccine
A, B16F10 mean tumor growth kinetics ± SEM after therapeutic immunization with an adjuvanted Inhibigen peptide vaccine or adjuvant alone (n = 11 per group). B, Mean tumor growth kinetics after therapeutic immunization with controls, or a combination of stimulatory neoantigens (2 SLPs) ± Inhibigen pool (4 SLPs) with adjuvant (CpG, QS21, and 3D-PHAD) or...
C, the combination of two stimulatory SLPs with individual deconvoluted Inhibigen SLPs with adjuvant (n = 15 per group). Statistical analyses were performed by one-way ANOVA on day 22. D, Antigen-specific immune response to stimulatory or Inhibigen neoantigen SLPs by ELISpot analysis on splenocytes from vaccinated mice. Data are represented as mean ± SEM IFNγ spot-forming cells (SFC) per million splenocytes; each symbol represents one mouse. E, Flow cytometric analysis of TILs isolated from vaccine-administered B16F10 tumor-bearing mice. (Left) Bar graph of proportion of CD45^+ T cells isolated from the TILs. (Right) Total CD3^+, CD4^+, and CD8^+ cells enriched from TIL normalized to tumor volume (mm^3). Analysis performed on tumor cells pooled from 4 mice/group. F, Immune cell populations assessed by chromogenic immunohistochemistry (IHC) of formalin-fixed paraffin-embedded (FFPE) sections of B16F10 melanoma tumors. Stains shown are CD4, CD8, FoxP3, F4/80, and CD11c (pink). Nuclei were counterstained with hematoxylin (blue); natural B16F10 melanin deposits are visible (brown). Images are representative of multiple sections and tumors from each group. Scale bar indicates 100 µm. G, Flow cytometric analysis of Tregs in spleens of vaccinated animals (n = 3 animals per group). Representative plots gated on live CD3^+CD4^+ T cells, and CD25^+Foxp3^+ double positive cells.

Figure 4. Vaccination elicits T cell responses measurable by both ex vivo and IVS fluorospot. A, and B, PBMCs from subject E were enriched for CD4^+ or CD8^+ T cells and stimulated with OLPs spanning each immunized SLP in an IFNγ and Granzyme B (GrB) dual color ex vivo fluorospot assay. Data are reported as the background-subtracted mean spot-forming cells (SFC) per million. Each panel represents the responses to the specific SLPs present in each of the four pools of immunization. C, For the in vitro stimulated (IVS) fluorospot assay, PBMCs were expanded for 10 days with OLPs spanning SLPs represented in each pool. On day 10, expanded cells were tested in an IFNγ/TNFα fluorospot assay and stimulated with each individual peptide. Data are reported as the mean SFC per 20,000 CD4^+ or CD8^+ T cells, also broken out by pools. D, and E, The proportion of peptides positive by the DFR(eq) test with a p-value of ≤0.05 (21) are shown for the ex vivo (D) and IVS (E) fluorospot assays. Circles represent baseline, squares represent D50 timepoint, each line represents one vaccinated subject. (53) F, Proportion of positive peptides using either ex vivo or IVS fluorospot assay.
Figure 2

(A) Graph showing the mean normalized IFN-γ response across different chromosomes. The graph includes data points and color-coded responses (Stimulatory, Non-Response, Inhibitory).

(B) Graph depicting tumor volume (mm³) over time (days) from immunization. Different treatments are represented by distinct markers: Vehicle (PBS), Adjuvant only, M30 + Trp2 + Adjuvant, M27 + M30 + Trp2 + Adjuvant, and Gal3St1 + M30 + Trp2 + Adjuvant.

(C) Graph showing IFN-γ SFC (per 1x10⁶ cells) across various conditions: Adjuvant only, M30 + Trp2 + Adj, Gal3St1 + M30 + Trp2 + Adj, M27 + M30 + Trp2 + Adj, and M30 + Trp2 + Adj.

(D) Graph illustrating tumor volume (mm³) over time (days) post initial challenge. Treatments include Naive, M27 + M30 + Trp2 + Adjuvant, and Gal3St1 + M30 + Trp2 + Adjuvant.
Figure 3

A

Tumor volume (mm³)

0 6 8 10 12 14 16 18 20 22 24

Day

Adjuvant only + Adjuvant

Inhib Pool (Mmp9 F5, Taar9, Abca17, Asb14)

B

Tumor volume (mm³)

0 6 8 10 12 14 16 18 20 22 24

Day

Vehicle ctrl (PBS)

Adjuvant only

M30+Trp2+Adjuvant

Inhib Pool (Mmp9 F5, Taar9, Abca17, Asb14)

+ M30 + Trp2 + Adjuvant

C

Tumor volume (mm³)

0 6 8 10 12 14 16 18 20 22 24

Day

Adjuvant only

M30+Trp2+Adjuvant

Inhib Pool (Mmp9 F5, Taar9, Abca17, Asb14)

MMP9 F5

Taar9

Abca17

Asb14

D

IPSC (per 1x10⁶ cells)

0 500 1000 1500 2000 2500 3000

Immunizations

Adjuvant Only

M30+Trp2 + adj

MMP9/FS

+M30+Trp2 + adj

E

T cell composition in TILs

Normalized to tumor size

% of enriched CD8+ cells

0 5 10 15 20

Cells/mm²

0 5 10 15

CD4

CD8

CD4

CD8

CD8

F

CD4

CD8

Fos/P3

F4/80

CD11c

Nuclei

Melanin

G

% of total cells

0.00 0.05 0.10 0.15 0.20

Adjuvant

M30+Trp2 + Adj

MMP9 F5+M30+Trp2 + Adj

T-regs in Spleen

Adjuvant

M30+Trp2 + Adj

MMP9 F5+M30+Trp2 + Adj
An empirical antigen selection method identifies neoantigens that either elicit broad anti-tumor T cell responses or drive tumor growth

Cancer Discov. Published OnlineFirst January 27, 2021.